师资

EN       返回上一级       师资搜索
赵天寿
讲席教授
中国科学院院士
碳中和能源研究院院长
zhaots@sustech.edu.cn

赵天寿,中国科学院院士、能源科学与工程热物理专家。1983年毕业于天津大学热物理工程系,1986年获该校硕士学位,1995年获得美国夏威夷大学博士学位。现任南方科技大学讲席教授、美国机械工程师学会(ASME) Fellow、英国皇家化学学会(RSC) Fellow、曾获Croucher资深研究成就奖、何梁何利基金科学与技术进步奖、国家自然科学二等奖、香港科大工程学杰出研究成就奖。入选Clarivate/Thomson Reuters 全球高被引科学家和最有影响力科学思想名录。任国际期刊International Journal of Heat and Mass Transfer主编与Energy & Environmental Science顾问编委。

赵院士长期致力热质传递理论和电池储能技术的研究。针对国家对可再生能源利用的重大需求,围绕燃料电池、液流电池、金属空气等流体电池储能装置中能量传递与转换关键科学问题,建立了电池储能系统中热质传递和电化学能量转换的耦合理论,提出了热、质、电子及离子协同传输方法,突破了高功率流体电池设计的关键技术。提出了以可充放电的液态能量载体储电的新方法,发明了充、放电装置彼此独立的新型储能系统,取得了系统效率与输出功率的同时跃升,将在解决风光电并网难题、实现可再生能源规模利用、解决空气污染与气候变化问题等方面将发挥重要作用。 
 
研究领域:
◆ 能源工程:燃料电池以及先进电池储能装置中能量传递与转换
◆ 传热传质:电池储能系统中热质传递和电化学能量转换的耦合理论
◆先进数值模拟技术:多组分/多相传输的格子玻尔兹曼方法、计算流体动力学

工作经历:
◆ 2021年-至今,南方科技大学,机械与能源工程系,讲席教授
◆ 2017年至2022,香港科技大学, 工程及环境学冠名讲席教授
◆ 2012年至2022,香港科技大学,能源研究院,院长
◆ 2011至2022年,香港科技大学,机械及航空航天工程系,讲座教授
◆ 2006至2011年,香港科技大学,机械工程系,教授
◆ 2001年至2006年,香港科技大学,机械工程系,副教授
◆ 1995年至2001,香港科技大学,机械工程系,助理教授

学习经历:
◆1991年11月至1995年8月,夏威夷大学,机械工程系,博士
◆1983年9月至1986年7月,天津大学,热物理工程系,硕士
◆1979年9月至1983年7月,天津大学,热物理工程系,本科
 
所获荣誉:
◆中国科学院院士;2019年、中国科学院。
◆何梁何利基金科学与技术进步奖;2018年、何梁何利基金会。
◆国家自然科学奖二等奖(第一完成人);2013年、中华人民共和国国务院。
◆国家自然科学奖二等奖(主要完成人);2012年、中华人民共和国国务院。
◆Croucher Senior Fellowship award;2008年、香港裘槎基金会。
 
代表文章(部分):
1.Y.K. Lin, M.C. Wu, J. Sun, L.C. Zhang, Q.P. Jian, T.S. Zhao, 2021, “A High-Capacity, Long-Cycling All-Solid-State Lithium Battery Enabled by Integrated Cathode/Ultrathin Solid Electrolyte”, Advanced Energy Materials, 11(35), 2101612
2.S.B. Wan, X.W. Liang, H.R. Jiang, J. Sun, N. Djilali, T.S. Zhao, 2021, “A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries”, Applied Energy, 298(), 117177
3.B. Liu, C.W. Tang, C. Zhang, G.C. Jia, T.S. Zhao, 2021, “Cost-Effective, High-Energy-Density, Nonaqueous Nitrobenzene Organic Redox Flow Battery”, Chemistry of Materials, 33 (3), 978–986
4.C. Zhao, G.L. Xu, Z. Yu, L.C. Zhang, I.H. Hwang, Y.X. Mo, Y.X. Ren, L. Cheng, C-J. Sun, Y. Ren, X. B. Zuo, J-T. Li, S.G. Sun, K. Amine, T.S. Zhao, 2021, "A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites", Nature Nanotechnology, 16(2021), 166-173
5.L.C. Zhang, C. Zhao, M.C. Wu, T.S. Zhao, 2020, "An energy-dense, flowable suspension of hollow carbon nanoshell-hosted sulfur as an electroactive material for flow batteries", Journal of Power Sources, 478(2020), 228750
6.Q.P. Jian, Y.H. Wan, J. Sun, M.C. Wu, T.S. Zhao, 2020, "A dendrite-free zinc anode for rechargeable aqueous batteries", Journal of Materials Chemistry A, 8(2020), 20175-20184
7.K. Liu, M.C. Wu, H.R. Jiang, Y.K. Lin, T.S. Zhao, 2020, "An ultrathin, strong, flexible composite solid electrolyte for high-voltage lithium metal batteries", Journal of Materials Chemistry, 8(2020), 18802-18809
8.L. Zeng, Y.X. Ren, L. Wei, X.Z. Fan, T.S. Zhao, 2020, "Asymmetric porous polybenzimidazole membranes with high conductivity and selectivity for vanadium redox flow batteries", Energy Technology, 8(10), 2000592.
9.C. Xiong, G.Y. Zhu, H.R. Jiang, Q. Chen, T.S. Zhao, 2020, "Achieving Multiplexed Functionality in a Hierarchical MXene-based Sulfur Host for High-rate, High-loading Lithium-Sulfur Batteries", Energy Storage Materials, 33(2020), 147-157.
10.Y.X. Ren, L. Zeng, H.R. Jiang, W.Q. Ruan, Q. Chen, T.S. Zhao, 2019, “Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium–sulfur batteries”, Nature Communications, 10 (2019) 3249
11.L. Shi, A. Xu, D. Pan, T.S. Zhao, 2019, "Aqueous proton-selective conduction across two-dimensional graphyne," Nature Communications 10 (2019) 1165.
12.H.R. Jiang, L. Wei, X.Z. Fan, W. Shyy, T.S. Zhao, 2019, "A novel energy storage system incorporating electrically rechargeable liquid fuels as the storage medium," Science Bulletin 64 (2019) 270-280.
13.B.W. Zhang, Y. Lei, B.F. Bai, A. Xu, T.S. Zhao, 2019, "A two-dimensional mathematical model for vanadium redox flow battery stacks incorporating nonuniform electrolyte distribution in the flow frame," Applied Thermal Engineering 151 (2019) 495-505.
14.L. Wei, M.C. Wu, T.S. Zhao, Y.K. Zeng, Y.X. Ren, 2018, "An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage," Applied Energy 215 (2018) 98-105.
15.M. Liu, D. Zhou, H.R. Jiang, Y.X. Ren, F.Y. Kang, T.S. Zhao, 2016, "A highly-safe lithium-ion sulfur polymer battery with SnO2 anode and acrylate-based gel polymer electrolyte," Nano Energy 28 (2016) 97-105.
16.X.B. Zhu, T.S. Zhao, P. Tan, Z.H. Wei, M.C. Wu, 2016, "A high-performance solid-state lithium-oxygen battery with a ceramic-carbon nanostructured electrode," Nano Energy 26 (2016) 565-576.
17.X.L. Zhou, Y.K. Zeng, X.B. Zhu, L. Wei, T.S. Zhao, 2016, "A high-performance dual-scale porous electrode for vanadium redox flow batteries," Journal of Power Sources 325 (2016) 329-336.
18.H.R. Jiang, Z.H. Lu, M.C. Wu, F. Ciucci, T.S. Zhao, 2016, "Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries," Nano Energy 23 (2016) 97-104.
19.P. Tan, Z.H. Wei, W. Shyy, T.S. Zhao, X.B. Zhu, 2016, "A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air," Energy & Environmental Science, 2016, 9, 1783-1793.
20.X.B. Zhu, T. S. Zhao, Z. H. Wei, P. Tan, L. An, 2015, "A high-rate and long cycle life solid-state lithium-air battery," Energy & Environmental Science, 2015, 8, 3745 - 3754.
21.Y.K. Zeng, T.S. Zhao, L. An, X.L. Zhou, L. Wei, 2015, "A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage," Journal of Power Sources 300 (2015) 438-443.
22.X.B. Zhu, T.S. Zhao, Z.H. Wei, P. Tan, G. Zhao, 2015, "A novel solid-state Li-O2 battery with an integrated electrolyte and cathode structure," Energy & Environmental Science, 2015, 8, 2782-2790.
23.L. Zeng, T.S. Zhao, L. An, G. Zhao, X.H. Yan, 2015, "A high-performance sandwiched-porous polybenzimidazole membrane with enhanced alkaline retention for anion exchange membrane fuel cells," Energy & Environmental Science, 2015, 8, 2768-2774.
24.Q. Xu, T.S. Zhao, 2015, "Fundamental models for flow batteries," Progress in Energy and Combustion Science 49 (2015) 40–58.
25.X.L. Zhou, T.S. Zhao, L. An, L. Wei, C. Zhang, 2015, "The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance," Electrochimica Acta 153 (2015) 492–498.
26.L. Zeng, T.S. Zhao, 2015, "Integrated inorganic membrane electrode assembly with layered double hydroxides as ionic conductors for anion exchange membrane water electrolysis," Nano Energy 11 (2015)110–118.
27.Q. Xu, T.S. Zhao, C. Zhang, 2014, “Performance of a vanadium redox flow battery with and without flow fields,” Electrochimica Acta142 (2014) 61–67.
28.P. Tan, W. Shyy, L. An, Z.H. Wei, and T.S. Zhao, 2014 “A gradient porous cathode for non-aqueous lithium-air batteries leading to a high capacity,” Electrochemistry Communications 46 (2014) 111–114.
29.Z.H. Chai, T.S. Zhao, 2013, “Lattice Boltzmann model for the convection-diffusion equation,” Physical Review E 87, 063309 (2013).
30.L. An, T.S. Zhao, Y.S. Li, Q.X. Wu, 2012, “Charge carriers in alkaline direct oxidation fuel cells,” Energy & Environmental Science 2012, 5, 7536-7538.
31.J.B. Xu, P. Gao, T.S. Zhao, 2012, “Non-precious CO3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells,” Energy & Environmental Science 2012,5,5333-5339.
32.S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, 2010, “Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells," Journal of Power Sources 195 (2010) 1001-1006.
33.T.S. Zhao, C. Xu, R. Chen, W.W. Yang, 2009, “Mass transport phenomena in direct methanol fuel cells,” Progress in Energy and Combustion Science 35 (2009) 275–292.
34.Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, 2009, “Mechanism study of the ethanol oxidation reaction on palladium in alkaline media,” Electrochimica Acta 54 (2009) 2203-2208.
35.C. Xu, T.S. Zhao, 2007, “A new flow field design for polymer electrolyte-based fuel cells,” Electrochemistry Communications 9 (2007) 497-503.
36.J.G. Liu, T.S. Zhao, R. Chen, C.W. Wong, 2005, “Effect of methanol concentration on passive DMFC performance,” Featured article in Fuel Cell Bulletin, ISSN 1464-2859 February 2005.
37.H. Yang, T.S. Zhao, Q. Ye, 2005, “In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields,” Journal of Power Sources, 139(1-2) pp. 79-90.
38.Q. Ye, T.S. Zhao, H. Yang, J. Prabhuram, 2005, "Electrochemical reactions in a DMFC under open circuit conditions," Electrochemical and Solid-State Letters, 8 (1) A52-A54 (2005).
39.Z.L. Guo, T.S. Zhao, 2002, “Lattice Boltzmann model for incompressible flows through porous media,” Physical Review E, 66, 036304 (2002).
40.S.M. Liao, T.S. Zhao, 2002, “Measurements of Heat Transfer Coefficients from Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels,” J. Heat Transf.-Trans. ASME 2002, 124 (3), 413-420.


Baidu
map