师资

EN       返回上一级       师资搜索
郝马克
副教授
mark@sustech.edu.cn

个人简介

Mark Hopwood,南方科技大学海洋科学与工程系副教授。他于2015年在英国南安普顿大学获得了海洋和地球科学博士学位,他的导师Peter Statham是痕量金属超净技术方面领先的研究学者,而该技术是研究海洋中超低浓度金属所必需的技术。同年,Hopwood博士加入了德国GEOMAR 基尔亥姆霍兹海洋研究中心,在Eric Achterberg的全球最大的海洋化学研究组里完成了博士后研究。同时还在北卡罗莱纳大学威尔明顿分校进行交流学习。2019年,他获得了DFG的独立研究资金,用于研究格陵兰岛和南极洲区域的冰-洋相互作用,并且自2017年以来被任命为智利高纬度海洋生态系统动态研究中心的副研究员(瓦尔迪维亚,智利)。 2021年4月,Hopwood教授作为助理教授加入南方科技大学,同年12月破格提升为副教授。

Hopwood教授已经参与了9个科考航次并在斯瓦尔巴德岛、格陵兰和南极洲上进行了累计10个月的极地科学考察。在Nature Communications、Nature Geoscience、Geophysical Research Letters等海洋学一流期刊上,共发表文章50篇。Hopwood教授目前是Journal Geophysical Research:Oceans的副编辑。

Hopwood教授目前教授两门课程(春季学期开设的本科生课程OCE108碳中和概论、秋季学期开设的研究生课程OCE5030海洋生物地球化学循环),同时兼任学校射箭社团的教练。Hopwood教授的研究团队目前也在中国科学院大学大亚湾生物综合实验站(深圳)开展大规模(100,000 升)实验,研究负排放技术的潜力如提高海洋碱度,以便在海洋中安全地储存更多的二氧化碳。

Mark老师还利用自己的业余时间,作为海阔体育的助教,教授小朋友们海洋科学的相关知识和浆板技能,从而让小朋友们感受到海洋科学的魅力。


教育背景

PhD Earth and Ocean Science (PhD awarded May 2015)

University of Southampton, UK, School of Oceanography, Sept 2011- Sept 2014

PhD: “The redox and complexation chemistry of iron within freshwater sources to the ocean”

MChem (combined BSc and MSc) Chemistry with Patent Law, 1st class honours

University of Manchester, UK, School of Chemistry, September 2007- June 2011

Thesis: “The promiscuity of two 4-methylideneimidazol-5-one dependent enzymes”


工作经历

SUSTech Southern University of Science and Technology, Shenzhen China March 2021-, Associate Professor 

GEOMAR Helmholtz Centre for Ocean Research Kiel September 2014-March 2021

PI for the DFG project ‘Biogeochemistry of ice-ocean interactions around Greenland’ (July 2019-June 2022). Formerly postdoctoral researcher working on the interaction between trace metals and primary production for the projects ‘Ocean Certain’ (EU, 2014-2017) and ‘Climate-Biogeochemistry Interactions in the Tropical Ocean’ (DFG, SFB 754, 2017- June 2019).


在研项目

1. POLAR BEAST cruise (5 weeks) – a polar cruise investigating Arctic/Atlantic connectivity via the EGC

2. EUROFLEETS Ice Disko cruise (2 weeks) – biogeochemistry of icebergs in Disko Bay

3. NSFC RFIS Investigating cobalt dynamics in the cryosphere (Arctic and Antarctic)


发表论著

50. Gu, Y. et al., Spatial and temporal variations in the micronutrient Fe across the Peruvian shelf from 1984-2017, Progress in Oceanography (2024)

49. Liu T. et al., Trace metal (Cd, Cu, Pb and Zn) fluxes from the Congo River into the South Atlantic Ocean are supplemented by atmospheric inputs, Geophysical Research Letters, (2023)

48. Vonnahme T. et al., Impact of winter freshwater from tidewater glaciers on fjords in Svalbard and Greenland; A review, Progress in Oceanography (2023)

47. Krause J. et al., Glacier‐derived particles as a regional control on marine dissolved Pb concentrations, J. Geophys. Res. Biogeosciences (2023)

46. Meire L. et al., Glacier retreat alters downstream fjord ecosystem structure and function in Greenland, Nature Geoscience, (2023)

45. Oliver H. et al., Greenland Subglacial Discharge as a Driver of Hotspots of Increasing Coastal Chlorophyll Since the Early 2000s, Geophysical Research Letters, (2023)

44. Zhu K. et al., Influence of Changes in pH and Temperature on the Distribution of Apparent Iron Solubility in the Oceans, Global Biogeochemical Cycles, (2023)

43. Stuart-Lee A. E. et al., Influence of glacier type on bloom phenology in two southwest Greenland fjords, Estuarine, Coastal and Shelf Science, (2023)

42. Kittu L. R. et al., Coastal N2 fixation rates coincide spatially with N loss in the Humboldt Upwelling System off Peru, Global Biogeochemical Cycles, (2023)

41. Chen X. G. et al., Dissolved, labile and total particulate trace metal dynamics on the northeast Greenland Shelf, Global Biogeochemical Cycles, (2022)

40. Hunt H. R. et al., Distinguishing the influence of sediments, the Congo River, and water-mass mixing on the distribution of iron and its isotopes in the Southeast Atlantic Ocean, Marine Chemistry, (2022)

39. Krisch S. et al., Quantifying ice-sheet derived lead (Pb) fluxes into the ocean; a case study at Nioghalvfjerdsbrae, Geophysical Research Letters, (2022)

38. Liu T. et al., Sediment release in the Benguela Upwelling System dominates trace metal input to the shelf and eastern South Atlantic Ocean, Global Biogeochemical Cycles (2022)

37. van Genuchten G. M. et al., Solid-phase Mn speciation in suspended particles along meltwater-influenced fjords of West Greenland, Geochimica et Cosmochimica Acta 326, 180-198 (2022)

36. Slater, D. A. et al., Characteristic depths, fluxes and timescales for Greenland's tidewater glacier fjords from subglacial discharge‐driven upwelling during summer, Geophysical Research Letters (2022)

35. Krisch, S. et al., Arctic–Atlantic exchange of the dissolved micronutrients Iron, Manganese, Cobalt, Nickel, Copper and Zinc with a focus on Fram Strait, Global Biogeochemical Cycles (2022)

34. Wallmann, K. et al., Biogeochemical feedbacks may amplify ongoing and future ocean deoxygenation: a case study from the Peruvian oxygen minimum zone, Biogeochemistry 159 (1), 45-67 (2022)

33. van Genuchten G. M. et al., Decoupling of particles and dissolved iron downstream of Greenlandic glacier outflows, Earth and Planetary Science Letters 576 (2021)

32. Krahmann, G. et al., Climate-Biogeochemistry Interactions in the Tropical Ocean: Data collection and legacy. Front. Mar. Sci. (2021)

31. Zhu, K. et al., Influence of pH and Dissolved Organic Matter on Iron Speciation and Apparent Iron Solubility in the Peruvian Shelf and Slope Region. Environ. Sci. Technol. (2021)

30. Krisch, S. et al., The 79°N Glacier cavity modulates subglacial iron export to the NE Greenland Shelf. Nat. Commun. 12, 3030 (2021).

29. Vergara-Jara, M. J. et al., A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015. Ocean Sci. 17, 561–578 (2021)

28. Browning, T. J. et al., Iron regulation of North Atlantic eddy phytoplankton productivity. Geophys. Res. Lett. (2021)

27. Geißler, F. et al., Lab-on-chip analyser for the in situ determination of dissolved manganese in seawater. Sci. Rep. 11, (2021)

26. Krause, J. et al., Trace element (Fe, Co, Ni and Cu) dynamics across the salinity gradient in Arctic and Antarctic glacier fjords, Frontiers in Earth Science (2021)

25. Cantoni, C. et al. Glacial drivers of marine biogeochemistry indicate a future shift to more corrosive conditions in an Arctic fjord. J. Geophys. Res. Biogeosciences 125, (2020)

24. Bach, L. T. et al., Factors controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system off Peru. Biogeosciences 17, (2020).

23. Krisch, S. et al., The influence of Arctic Fe and Atlantic fixed N on summertime primary production in Fram Strait, North Greenland Sea. Sci. Rep. 10, 15230 (2020)

22. Browning, T. J. et al. Nutrient regulation of late spring phytoplankton blooms in the midlatitude North Atlantic. Limnol. Oceanogr. 65, 1136–1148 (2019)

21. Hopwood, M. J. et al., Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosph. (2020)

20. Vieira, L. H. et al., Unprecedented Fe delivery from the Congo River margin to the South Atlantic Gyre. Nat. Commun. (2020)

19. Hopwood, M. J. et al., Experiment design and bacterial abundance control extracellular H2O2 concentrations during four series of mesocosm experiments. Biogeosciences (2020)

18. Hopwood, M. J. et al. Fe(II) stability in coastal seawater during experiments in Patagonia, Svalbard, and Gran Canaria. Biogeosciences (2020)

17. Hopwood, M. J. et al., Highly variable iron content modulates iceberg-ocean fertilisation and potential carbon export. Nat. Commun. 10, 5261 (2019)

16. Straneo, F. et al., The case for a sustained Greenland Ice sheet-Ocean Observing System (GrIOOS). Frontiers in Marine Science (2019)

15. Höfer, J. et al., The role of water column stability and wind mixing in the production/export dynamics of two bays in the Western Antarctic Peninsula. Prog. Oceanogr. 174, (2019)

14. Hopwood, M. J. et al., Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9, 3256 (2018)

13. Hopwood, M. J. et al., Photochemical vs. Bacterial Control of H2O2 Concentration Across a pCO2 Gradient Mesocosm Experiment in the Subtropical North Atlantic. Frontiers in Marine Science vol. 5 105 (2018)

12. Menzel Barraqueta, J.-L. et al., Aluminium in the North Atlantic Ocean and the Labrador Sea (GEOTRACES GA01 section): roles of continental inputs and biogenic particle removal. Biogeosciences 2018, 1–28 (2018).

11. Hopwood, M. J., Rapp, I., Schlosser, C. & Achterberg, E. P. Hydrogen peroxide in deep waters from the Mediterranean Sea, South Atlantic and South Pacific Oceans. Sci. Rep. 7, (2017)

10. Hopwood, M. J. et al. A Comparison between Four Analytical Methods for the Measurement of Fe(II) at Nanomolar Concentrations in Coastal Seawater. Frontiers in Marine Science vol. 4 192 (2017)

9. Geißler, F. et al., Evaluation of a ferrozine based autonomous in situ lab-on-chip analyzer for dissolved iron species in coastal waters. Front. Mar. Sci. 4, (2017)

8. Hopwood, M. J. et al., The heterogeneous nature of Fe delivery from melting icebergs. Geochemical Perspect. Lett. 3, 200–209 (2017)

7. Meire, L. et al., High export of dissolved silica from the Greenland Ice Sheet. Geophys. Res. Lett. 43, 9173–9182 (2016)

6. Hopwood, M. J. et al., Seasonal changes in Fe along a glaciated Greenlandic fjord. Front. Earth Sci. 4, (2016)

5. Hopwood, M. J., Statham, P. J., Skrabal, S. A. & Willey, J. D. Dissolved iron(II) ligands in river and estuarine water. Mar. Chem. 173, 173–182 (2015)

4. Hopwood, M. J. et al., Glacial meltwater from Greenland is not likely to be an important source of Fe to the North Atlantic. Biogeochemistry 124, (2015)

3. Willey, J. D. et al., The role of fossil fuel combustion on the stability of dissolved iron in rainwater. Atmos. Environ. 107, 187–193 (2015)

2. Hopwood, M. J., Statham, P. J. & Milani, A. Dissolved Fe(II) in a river-estuary system rich in dissolved organic matter. Estuar. Coast. Shelf Sci. 151, 1–9 (2014).

1. Hopwood, M. J., Statham, P. J., Tranter, M. & Wadham, J. L. Glacial flours as a potential source of Fe(II) and Fe(III) to polar waters. Biogeochemistry 118, 443–452 (2014)

Baidu
map