消息
×
loading..
南方科技大学知识苑(SUSTech KC): 基于聚丙烯材料的传感器制备及在动态手势信号检测中的应用研究
中文版 | English
题名

基于聚丙烯材料的传感器制备及在动态手势信号检测中的应用研究

其他题名
PREPARATION OF SENSORS BASED ON POLYPROPYLENE MATERIALS AND THEIR APPLICATION IN DYNAMIC GESTURE SIGNAL DETECTION
姓名
姓名拼音
PAN Jiawen
学号
12233262
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
李光林
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-20
论文提交日期
2024-07-11
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着人机交互技术的不断发展,手部动作成为了一种自然、直观的交 互方式,目前研究中大多主要利用的是静态动作时的信号,忽略了动态动 作时的识别,会导致动作识别鲁棒性差等问题。由于动态手势具有时空复 杂、变化多样、易受环境干扰的特点,使用目前常用的传感器在捕捉动态 手势方面尚显不足,这对传感器提出了更高的要求。所以需要开发一款响 应速度快、灵敏度高、轻量小巧的传感器以适配动态手势的研究。 针对动态手势特点,本文选取多孔聚丙烯材料来制备压电驻极体薄膜, 这种薄膜具有小巧轻量、良好的机械柔性、成本低的特点。本课题中,制 备 的 压 电 驻 极 体 传 感 器 结 合 了 肌 电 电 极 , 设 计 并 搭 建 了 一 套 肌 电 信 号 (Electromyography,EMG)和力肌图谱信号(Force Myography,FMG) 复合采集系统检测动态手势信号。 本文利用模式识别方法对采集到的 EMG 和 FMG 进行处理,实现动态 手势的精准识别。在数据预处理阶段,对两种信号进行了滤波的初步处理, 然后进一步利用 FastICA 去除了 FMG 信号中的干扰信号。在特征提取阶段, 首先,提出了采用能量检测的办法来进行起始点和终止点的自动检测和活 动段的自动划分;然后进行特征重要度的分析,选取了四个重要程度高的 特征进行下一步的研究。在手势识别阶段,比较了单一模态下线性判别分 析和支持向量机算法两种分类算法的动态手势时的表现,后续在信息层进 行融合,并将融合的手势分类结果与单一模态比较。 结果表明:两种算法解码下,FMG 信号的表现都要优于 EMG 信号; 不论是仅 FMG 信号还是仅 EMG 信号,线性判别分析的表现都优于支持向 量机;结合 EMG-FMG 双模态时能获得更好的动态手势分类效果。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-05
参考文献列表

[1] 王美艳. 中国人口形势 、挑战与应对策略[J] . 国家安全研究, 2023(6): 102- 121 .
[2] KUBER P M, RASHEDI E.Alterations in Physical Demands During Virtual/AugmentedReality-Based Tasks:A Systematic Review[J] . Annals of Biomedical Engineering , 2023 , 51 (10) : 1910–1932.
[3] ADELSBERGER R S, CALATRONI A, SHAHNA S.A Novel Piezo-Based Technology forHaptic Feedback for XR[C]// 2023 IEEE Conference on Virtual Reality and 3D User InterfacesAbstracts and Workshops (VRW) . Shanghai, China, 2023: 1015-1016.
[4] GUARESE R, PRETTY E, ZAMBETTA F. XR towards tele-guidance: mixing realities inassistive technologies for blind and visually impaired people[C]// 2023 IEEE Conference onVirtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) . Shanghai , China , 2023: 324-329.
[5] LIN P C, YANKSON B, CHAUHAN V, et al. Building a speech recognition system withprivacy identification information based on Google Voice for social robots[J] . Journal ofSupercomputing , 2022 , 78(12): 15060–15088 . DOI: 10. 1007/ s11227-022-04487-3.
[6] MULFARI D, CARNEVALE L, GALLETTA A, et al.Edge Computing Solutions SupportingVoice Recognition Services for Speakers with Dysarthria[C]// 2023 IEEE/ACM 23rdInternational Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW) . Bangalore, India, 2023: 231-236.
[7] ZHOU Y, LIU Y Y, WANG N, et al. Partial discharge ultrasonic signals pattern recognition intransformer using BSO-SVM based on microfiber coupler sensor[J]. Measurement, 2022, 201:111737. ISSN: 0263-2241.
[8] ZHANG Z. Partial Discharge Pattern Recognition Based on a Multifrequency F–P SensingArray, AOK Time–Frequency Representation, and Deep Learning[J]. IEEE Transactions onDielectrics and Electrical Insulation, 2022, 29(5): 1701-1710.
[9] CAI S, LU Z, CHEN B, et al. Dynamic Gesture Recognition of A-Mode Ultrasonic Basedon the DTW Algorithm[J]. IEEE Sensors Journal, 2022, 22(18): 17924-17931.
[10] OLSEN C D, HAMRICK W C, LEWIS S R, et al. Wrist EMG Improves GestureClassification for Stroke Patients[C]// 2023 International Conference on RehabilitationRobotics (ICORR) . Singapore , Singapore , 2023: 1- 6.
[11] BAI Y, LI X, ZHENG C, et al. Liquid Metal Flexible EMG Gel Electrodes for GestureRecognition[J]. Biosensors, 2023, 13(692).
[12] CHEN C, YU Y, SHENG X, et al. Real-Time Hand Gesture Recognition by Decoding MotorUnit Discharges Across Multiple Motor Tasks From Surface Electromyography[J]. IEEETransactions on Biomedical Engineering ,2023, 70(7): 2058-2068.
[13] REHMAN M U, SHAH B K, HAQ I U, et al. A Wearable Force Myography-Based Armbandfor Recognition of Upper Limb Gestures[J]. Sensors, 2023, 23(9357).
[14] REHMAN M U, SHAH K, HAQ I U, et al. A Force Myography based HMI for Classificationof Upper Extremity Gestures[C]// 2022 2nd International Conference on Artificial Intelligence(ICAI). Islamabad, Pakistan , 2022: 100-104.
[15] ZOU P. Wearable Iontronic FMG for Classification of Muscular Locomotion[J]. IEEE Journalof Biomedical and Health Informatics, 2022, 26(7): 2854-2863.
[16] REINSCHMIDT E, VOGT C, MAGNO M. Realtime Hand-Gesture Recognition Based onNovel Charge Variation Sensor and IMU[C]// 2022 IEEE Sensors. Dallas, TX, USA, 2022: 1-4.
[17] ZHANG D.Fine-Grained and Real-Time Gesture Recognition by Using IMU Sensors[J]. IEEETransactions on Mobile Computing, 202, 22(4): 2177-2189.
[18] WANG C.Intake Gesture Detection With IMU Sensor in Free-Living Environments: TheEffects of Measuring Two-Hand Intake and Down-Sampling[C]// 2023 IEEE 19thInternational Conference on Body Sensor Networks (BSN). Boston, MA, USA, 2023: 1-4.
[19] LING Y,CHEN X,RUAN Y,et al. Comparative Study of Gesture Recognition Based onAccelerometer and Photoplethysmography Sensor for Gesture Interactions in WearableDevices[J]. IEEE Sensors Journal, 2021, 21(15): 17107- 17117.
[20] ZHAO T, LIU J, WANG Y, et al. Towards Low-Cost Sign Language Gesture RecognitionLeveraging Wearables[J]. IEEE Transactions on Mobile Computing, 2021, 20(4): 1685-701.
[21] LI D, KANG P, ZHU K,et al. Feasibility of Wearable PPG for Simultaneous Hand Gestureand Force Level Classification[J]. IEEE Sensors Journal, 2023, 23(6): 6008- 6017.
[22] QI J, MA L, CUI Z, et al. Computer vision-based hand gesture recognition for human-robotinteraction: a review[J]. Complex & Intelligent Systems, 2024, 10: 1581–1606.
[23] CÓRDOVA J C, FLORES C, ANDREU-PEREZ J. EMGTFNet: Fuzzy Vision Transformer toDecode Upperlimb sEMG Signals for Hand Gestures Recognition[C]//2023 IEEE InternationalConference on Fuzzy Systems (FUZZ), 2023: 1- 6.
[24] TAN C K, LIM K M, LEE C P, et al. SDViT: Stacking of Distilled Vision Transformers forHand Gesture Recognition[J]. Applied Sciences, 2023, 13:12204 .
[25] DACCOLTI D, CLEMENTE F, MANNINI A, et al. Online Classification of Transient EMGPatterns for the Control of the Wrist and Hand in a Transradial Prosthesis[J]. IEEE Roboticsand Automation Letters, 2023, 8(2): 1045- 1052.
[26] BARRY D T, LEONARD J A, GITTER A J, et al. Acoustic myography as a control signal foran externally powered prosthesis[J]. Arch Phys Med Rehabil , 1986 , 67: 267-269 .
[27] XIAO Y, LIU T, HAN Y, et al. Realtime Recognition of Dynamic Hand Gestures in PracticalApplications[J]. ACM Trans. Multimedia Comput. Commun. Appl, 2024, 20(2): Article 50.
[28] YANG X, CHEN K, WAN H, et al. An Approach to Dynamic Gesture Recognition Based onInstantaneous Posture[C]// 2021 IEEE 7th International Conference on Virtual Reality (ICVR). Foshan, China , 2021: 90-95.
[29] WANG G, QIU W, LIU Y, et al. Damage detection for structural health monitoring usingultra- sensitive flexible piezoelectret sensors[J]. Structural Health Monitoring , 2023, 22(4):2800-2812 .
[30] REHMAN M U, SHAH K, HAQ I U, et al. Assessment of Low-Density Force MyographyArmband for Classification of Upper Limb Gestures[J]. Sensors, 2023, 23(9): 2716.
[31] REHMAN M U, SHAH K, HAQ I U, et al. A Wearable Force Myography-Based Armband forRecognition of Upper Limb Gestures[J]. Sensors, 2023, 23(16): 9357.
[32] MOQADAM S B, ASHEGHABADI A S, XU J. A Novel Hybrid Approach to PatternRecognition of Finger Movements and Grasping Gestures in Upper Limb Amputees[J]. IEEESensors Journal, 2022, 22(3): 2591-2602.
[33] LI N, YANG D, JIANG L, et al. Combined use of FSR sensor array and SVM classifier forfinger motion recognition based on pressure distribution map[J]. J Bionic Eng, 2012, 9(1): 39–47.
[34] XIAO Z G, MENON C. Towards the development of a wearable feedback system formonitoring the activities of the upper-extremities[J]. Xiao Menon J NeuroEng Rehabil, 2014, 11: 13.
[35] XIAO Z G, ELNADY A M, MENON C. Control an exoskeleton for forearm rotation usingFMG[C]//Proceedings of the 5th IEEE RAS/EMBS international conference on biomedicalrobotics and biomechatronics. 2014: 591- 596.
[36] 孙翰轩, 陈盛华, 徐策, 等. 具有多孔双微结构层的柔性电容式压力传感器[J/OL]. 微纳电子技术:1-9.
[37] GODIYAL A K, VERMA H K, KHANNA N, et al. A Force Myography-Based System forGait Event Detection in Overground and Ramp Walking[J]. IEEE Transactions onInstrumentation and Measurement, 201 , 67(10): 2314-2323.
[38] TAN J W, YI H. Application of Forearm FMG signals in Closed Loop Modality- matchedSensory Feedback Stimulation[J]. J Bionic Eng, 2020, 17(3): 899- 908.
[39] HELLARA H. Classification of Dynamic Hand Gestures using Multi SensorsCombinations[C]// 2022 IEEE 9th International Conference on Computational Intelligence andVirtual Environments for Measurement Systems and Applications (CIVEMSA). Chemnitz, Germany, 2022: 1-5.
[40] SESSLER G M, HILLENBRAND J. Electromechanical response of cellular electret films[C]//10th International Symposium on Electrets (ISE 10). Proceedings (Cat. No. 99 CH36256). IEEE, 1999: 261-264.
[41] ERHARD D P, LOVERA D. Recent advances in the improvement of polymer electretfilms[C]// Complex macromolecular systems II. 2010: 155-207.
[42] SESSLER G M Electrets: recent developments[J]. Journal of Electrostatics, 2001, 51:137- 145.
[43] NEUGSCHWANDTNER G S, SCHWÖDIAUER R, BAUER-GOGONEA S, et al. Piezo-andpyroelectricity of a polymer-foam space-charge electret[J]. Journal of Applied Physics, 2001, 89(8): 4503-4511.
[44] RAHMATI A H, YANG S, BAUER S, et al. Nonlinear bending deformation of soft electretsand prospects for engineering flexoelectricity and transverse (d31)piezoelectricity[J]. SoftMatter, 2019, 15(1): 127-148.
[45] BAUER S. Piezo-, pyro-and ferroelectrets: soft transducer materials for electromechanicalenergy conversion[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(5):953-962.
[46] TAJITSU Y. Piezoelectric properties of ferroelectret[J]. Ferroelectrics, 2011, 415(1): 57-66.
[47] LEKKALA J, PORAMO R, NYHOLM K, et al. EMF force sensor— a flexible and sensitiveelectret film for physiological applications[J]. Medical and Biological Engineering andComputing, 1996, 34(Suppl 1): 67- 68.
[48] 游 琼 , 张 晓 青 . 聚 丙 烯 压 电 驻 极 体 薄 膜 声 电 传 感 器 的 性 能 [J]. 压 电 与 声 光 , 2013 ,35(06):849- 852 .
[49] GERHARD-MULTHAUPT R. Less can be more. Holes in polymers lead to a new paradigmof piezoelectric materials for electret transducers[J]. IEEE Transactions on Dielectrics andElectrical Insulation, 2002, 9(5): 850-859.
[50] WEGENER M, BAUER S. Microstorms in cellular polymers: A route to soft piezoelectrictransducer materials with engineered macroscopic dipoles[J]. ChemPhysChem, 2005, 6(6):1014-1025.
[51] 张添乐, 黄曦, 郑凯等. 极化电压对聚丙烯压电驻极体膜压电性能的影响[J].物理学报,2014,63(15):389-395.
[52] CHU Y, ZHONG J, LIU H, et al. Human pulse diagnosis for medical assessments using awearable piezoelectret sensing system[J]. Advanced Functional Materials, 2018, 28(40):1803413.
[53] ZHANG L, CHEN Q, HUANG X, et al. Fiber-based electret nanogenerator withasemisupported structure for wearable electronics[J]. ACS Applied Materials & Interfaces, 2021, 13(39): 46840-46847.
[54] WANG S, YANG J, LU P, et al. Speech Communication System Based on PiezoelectricElectret Mechanical Antenna[J]. Applied Sciences, 2023, 13(4): 2332.
[55] WANG X, CHEN P, WU M, et al. A Dynamic Gesture Recognition Algorithm based onFeature Fusion from RGB-D Sensor[C]// 2022 IEEE International Conference onMechatronics and Automation (ICMA). IEEE, 2022: 1040-1045.
[56] CAI S, LU Z, CHEN B, et al. Dynamic gesture recognition of A-mode ultrasonic based on theDTW algorithm[J]. IEEE Sensors Journal, 2022 , 22(18): 17924-17931.
[57] ZHANG Y, WANG F. HandFormer: A Dynamic Hand Gesture Recognition Method Based onAttention Mechanism[J]. Applied Sciences, 2023, 13(7): 4558.
[58] KE A, HUANG J, CHEN L, et al. An ultra-sensitive modular hybrid EMG–FMG sensor withfloating electrodes[J]. Sensors, 2020, 20(17): 4775.
[59] LIU C, ATITALLAH B B, RAMALINGAME R, et al.A Hybrid Measurement System forHand Signs Recognition based on EMG-FMG Measurements[C]// 2022 IEEE 9th InternationalConference on Computational Intelligence and Virtual Environments for MeasurementSystems and Applications (CIVEMSA). IEEE, 2022: 1-6.
[60] JIANG S, GAO Q, LIU H, et al. A novel, co-located EMG-FMG-sensing wearable armbandfor hand gesture recognition[J]. Sensors and Actuators A: Physical, 2020, 301: 111738.
[61] FANG P, PENG Y, LIN W H, et al. Wrist pulse recording with a wearablepiezoelectret compound sensing system and its applications in health monitoring[J]. IEEESensors Journal, 2021, 21(18): 20921-20930.
[62] MO X, ZHOU H, LI W, et al. Piezoelectrets for wearable energy harvesters and sensors[J]. Nano Energy, 2019, 65: 104033.
[63] MADDAH H A. Polypropylene as a promising plastic: A review[J]. Am. J. Polym. Sci, 2016, 6(1) : 1-11.
[64] MO X, ZHOU H, LI W, et al. Piezoelectrets for wearable energy harvesters and sensors[J]. Nano Energy, 2019, 65: 104033.
[65] MA X, ZHANG X, FANG P. Flexible film-transducers based on polypropylene piezoelectrets:Fabrication, properties, and applications in wearable devices[J]. Sensors and Actuators A:Physical, 2017, 256: 35-42 .
[66] CHEN L, CAO J, LI G, et al. Property assessment and application exploration for layeredpolytetrafluoroethylene piezoelectrets[J]. IEEE Sensors Journal, 2019, 19(23): 11262-11271.
[67] FANG P, PENG Y, LIN W H, et al. Wrist pulse recording with a wearable piezoresistor- piezoelectret compound sensing system and its applications in health monitoring[J]. IEEESensors Journal, 2021, 21(18): 20921-20930.
[68] RAPIN M, BRAUN F, ADLER A, et al. Wearable sensors for frequency-multiplexed EIT andmultilead ECG data acquisition[J]. IEEE Transactions on Biomedical Engineering, 2018,66(3):810-820.
[69] BELYEA A, ENGLEHART K, SCHEME E. FMG versus EMG: A comparison of usability forreal-time pattern recognition based control[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(11): 3098-3104.
[70] KE A, HUANG J, CHEN L, et al. An ultra-sensitive modular hybrid EMG– FMG sensor withfloating electrodes[J]. Sensors, 2020, 20(17): 4775.
[71] ZHANG D, XIONG A, ZHAO X, et al. PCA and LDA for EMG-based control of bionicmechanical hand[C]// 2012 IEEE international conference on information and automation. IEEE, 2012: 960-965.
[72] CHU J U, MOON I, LEE Y J, et al. A supervised feature-projection-based real-time EMGpattern recognition for multifunction myoelectric hand control[J]. IEEE/ASME Transactionson mechatronics, 2007, 12(3): 282-290.
[73] SUN Q, ZHANG X, LI H, et al. A fault-tolerant algorithm to enhance generalization of EMG- based pattern recognition for lower limb movement[C]// 2020 10th Institute of Electrical andElectronics Engineers International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2020: 332-337.
[74] YU Y, CHEN X, CAO S, et al. Exploration of Chinese sign language recognition usingwearable sensors based on deep belief net[J]. IEEE journal of biomedical and healthinformatics, 2019, 24(5): 1310-1320.
[75] ZHANG H, XIAO Z, WANG J, et al. A novel IoT-perceptive human activity recognition(HAR) approach using multihead convolutional attention[J]. IEEE Internet of Things Journal, 2019, 7(2): 1072-1080.
[76] DU C, ZHANG L, SUN X, et al. Enhanced Multi-Channel Feature Synthesis for Hand GestureRecognition Based on CNN With a Channel and Spatial Attention Mechanism. IEEE Access, Vol. 8 (2020), 144610-144620[J]. 2020.

所在学位评定分委会
材料与化工
国内图书分类号
TB302.3
来源库
人工提交
成果类型学位论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/779129
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
潘佳文. 基于聚丙烯材料的传感器制备及在动态手势信号检测中的应用研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233262-潘佳文-中国科学院深圳(5317KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[潘佳文]的文章
百度学术
百度学术中相似的文章
[潘佳文]的文章
必应学术
必应学术中相似的文章
[潘佳文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map