南方科技大学知识苑(SUSTech KC): 仿生脚板的结构设计与材料力学分析
中文版 | English
题名

仿生脚板的结构设计与材料力学分析

其他题名
STRUCTURAL DESIGN AND MATERIAL MECHANICS ANALYSIS OF BIONIC FOOTPLATE
姓名
姓名拼音
GAO Gang
学号
12233296
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
高飞
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-07
论文提交日期
2024-07-11
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

下肢假肢是专为那些失去或拥有不完整下肢肢体的人设计和制造的康复助力设备。有效的下肢假肢装备能够显著地弥补下肢截肢患者所失去的肢体功能。作为下肢康复设备的重要组成部分,良好的假肢脚结构设计可以帮助下肢截肢患者恢复趋近于截肢前的行走状态。与传统的假肢脚相比,新型储能假肢脚可以使下肢截肢患者更有效地模拟自然步态。但目前假肢脚的设计多受限于足部骨骼特征,缺少对足部三维立体整体的参考,近期研究中表明足底固有肌肉是脚部在双足行走期间对抗地面推离时的主要刚性来源,足底肌肉在行走过程中起着重要的储能推进作用。

本文的创新性在于以人体足部三维立体整体特征作为假肢脚仿生设计的参考,设计了一款新型仿生假肢脚板,同时利用假肢脚板底部的换能器将机械能转化为电能。通过有限元分析的方法,优化假肢脚板的结构与尺寸。通过材料拉伸测试与弯曲测试分析方法选择碳纤维与锰钢作为假肢脚板的主要组成材料。对假肢脚板进行静态测试,舒适度达到了国家标准的要求。为验证所设计假肢脚板的性能,在单边膝下截肢患者身上进行了临床试验。通过动态捕捉系统获取受试者的运动学数据,分析受试者各关节角度与地面支反力的数据,结果显示本文所设计的仿生假肢脚板具有良好的储能缓冲作用。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] BARNES J A, EID M A, CREAGER M A, et al. Epidemiology and risk of amputation in patients with diabetes mellitus and peripheral artery disease[J]. Arteriosclerosis, thrombosis, and vascular biology, 2020, 40: 1808-1817.
[2] SINHA R, VAN DEN HEUVEL W J A, AROKIASAMY P. Factors affecting quality of life in lower limb amputees[J]. Prosthetics and orthotics international, 2011, 35: 90-96.
[3] 赵燕潮. 中国残联发布我国最新残疾人口数据[J]. 残疾人研究, 2012(A01):1.
[4] ASIF M, TIWANA M I, KHAN U S, et al. Advancements, trends and future prospects of lower limb prosthesis[J]. IEEE Access, 2021, 9: 85956-85977.
[5] JOHN C. Three Years of Work for Handicapped Men-A Report of the Activities of the Institute for Crippled and Disabled Men[J]. New York, 1999: 19-24.
[6] BEHERA P, DASH M. Life after lower limb amputation: a meta-aggregative systemic review of the effect of amputation on amputees[J]. Journal of Disability Studies, 2021, 7: 90-96.
[7] PEAT G, MCCARNEY R, CROFT P. Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care[J]. Annals of the rheumatic diseases, 2001, 60(2): 91-97.
[8] MUSSMAN M, ALTWERGER W, EISENSTEIN J, et al. Contralateral lower extremity evaluation with a lower limb prosthesis[J]. Journal of the American Podiatry Association, 1983, 73(7): 344-346.
[9] ROBBINS S, WAKED E, KROUGLICOF N. Vertical impact increase in middle age may explain idiopathic weight-bearing joint osteoarthritis[J]. Archives of physical medicine and rehabilitation, 2001, 82(12): 1673-1677.
[10] DONELAN J M, KRAM R, KUO A D. Simultaneous positive and negative external mechanical work in human walking[J]. Journal of biomechanics, 2002, 35(1): 117-124.
[11] 丁文龙,刘学政. 系统解剖学[M].第9版.北京:人民卫生出版社, 2018.
[12] HUMPHREY L R, HEMAMI H. A computational human model for exploring the role of the feet in balance[J]. Journal of biomechanics, 2010, 43: 3199-3206.
[13] GEFEN A, MEGIDO-RAVID M, ITZCHAK Y, et al. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications[J]. J. Biomech. Eng., 2000, 122: 630-639.
[14] VERSLUYS R, BEYL P, VAN DAMME M, et al. Prosthetic feet: State-of-the-art review and the importance of mimicking human ankle–foot biomechanics[J]. Disability and Rehabilitation: Assistive Technology, 2009, 4: 65-75.
[15] CHAUHAN P, SINGH A K, RAGHUWANSHI N K. The state of art review on prosthetic feet and its significance to imitate the biomechanics of human ankle-foot[J]. Materials Today: Proceedings, 2022, 62: 6364-6370.
[16] VERSLUYS R, DESOMER A, LENAERTS G, et al. From conventional prosthetic feet to bionic feet: a review study[C]//2008 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics. IEEE, 2008: 49-54.
[17] ADALARASU K, JAGANNATH M, MATHUR M K. Comparison on Jaipur, SACH and Madras foot[J]. Int. J. Adv. Eng. Sci. Technol, 2011, 4: 187-192.
[18] LEHMANN J F, PRICE R, BOSWELL-BESSETTE S, et al. Comprehensive analysis of energy storing prosthetic feet: Flex Foot and Seattle Foot versus standard SACH foot[J]. Archives of physical medicine and rehabilitation, 1993, 74: 1225-1231.
[19] CHIRIAC O A, BUCUR D. From conventional prosthetic feet to bionic feet. A review[C]//Proceedings of the International Conference of Mechatronics and Cyber-MixMechatronics-2020. Springer International Publishing, 2020: 130-138.
[20] ARYA A P, LEES A, NERULA H C, et al. A biomechanical comparison of the SACH, Seattle and Jaipur feet using ground reaction forces[J]. Prosthetics and Orthotics International, 1995, 19: 37-45.
[21] WOOG A. Sexless Oysters and Self-Tipping Hats: 100 Years of Invention in the Pacific Northwest[M]. Sasquatch Books, 1991.
[22] HAFNER B J, SANDERS J E, CZERNIECKI J M, et al. Transtibial energy-storage-and-return prosthetic devices: a review of energy concepts and a proposed nomenclature[J]. Journal of Rehabilitation Research & Development, 2002, 39.
[23] CHERELLE P, MATHIJSSEN G, WANG Q, et al. Advances in propulsive bionic feet and their actuation principles[J]. Advances in mechanical engineering, 2014, 6: 984046.
[24] ZHENG H, SHEN X. Sleeve muscle actuator and its application in transtibial prostheses[C]//2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR). IEEE, 2013: 1-5.
[25] SUP F, BOHARA A, GOLDFARB M. Design and control of a powered knee and ankle prosthesis[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE, 2007: 4134-4139.
[26] SHULTZ A H, MITCHELL J E, TRUEX D, et al. Preliminary evaluation of a walking controller for a powered ankle prosthesis[C]//2013 IEEE International Conference on Robotics and Automation. IEEE, 2013: 4838-4843.
[27] CHERELLE P, JUNIUS K, GROSU V, et al. The amp-foot 2.1: actuator design, control and experiments with an amputee[J]. Robotica, 2014, 32: 1347-1361.
[28] GAO F, LIU Y, LIAO W H. Design of powered ankle-foot prosthesis with nonlinear parallel spring mechanism[J]. Journal of Mechanical Design, 2018, 140(5): 055001.
[29] HADJ-MOUSSA F, NGAN C C, ANDRYSEK J. Biomechanical factors affecting individuals with lower limb amputations running using running-specific prostheses: A systematic review[J]. Gait & Posture, 2022, 92: 83-95.
[30] TACCA J R, BECK O N, TABOGA P, et al. Running-specific prosthesis model, stiffness and height affect biomechanics and asymmetry of athletes with unilateral leg amputations across speeds[J]. Royal Society Open Science, 2022, 9(6): 211691.
[31] BEKRATER-BODMANN R. Factors associated with prosthesis embodiment and its importance for prosthetic satisfaction in lower limb amputees[J]. Frontiers in neurorobotics, 2021, 14: 604376.
[32] J.A. DELISA, Gait analysis in the science of rehabilitation[M]. Diane Publishing, 1998. pp. 1-2.
[33] NIXON M S, TAN T, Chellappa R. Human identification based on gait[M]. Springer Science & Business Media, 2010.
[34] GRONLEY J A K, PERRY J. Gait analysis techniques: Rancho los amigos hospital gait laboratory[J]. Physical Therapy, 1984, 64: 1831-1838.
[35] 恽晓平. 康复疗法评定学(第二版)[M]. 北京:华夏出版社, 2014.
[36] GEFEN A, MEGIDO-RAVID M, ITZCHAK Y, et al. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications[J]. J. Biomech. Eng., 2000, 122: 630-639.
[37] WANG W J, CROMPTON R H. Analysis of the human and ape foot during bipedal standing with implications for the evolution of the foot[J]. Journal of biomechanics, 2004, 37: 1831-1836.
[38] LICHTWARK G A, KELLY L A. Ahead of the curve in the evolution of human feet[J]. 2020.
[39] VENKADESAN M, YAWAR A, ENG C M, et al. Stiffness of the human foot and evolution of the transverse arch[J]. Nature, 2020, 579(7797): 97-100.
[40] ZHAO G P, GRIMMER M, SEYFARTH A. The mechanisms and mechanical energy of human gait initiation from the lower-limb joint level perspective[J]. Scientific Reports, 2021, 11(1): 22473.
[41] HICKS J H. The mechanics of the foot: II. The plantar aponeurosis and the arch[J]. Journal of anatomy, 1954, 88(Pt 1): 25.
[42] BOLGLA L A, MALONE T R. Plantar fasciitis and the windlass mechanism: a biomechanical link to clinical practice[J]. Journal of athletic training, 2004, 39: 77.
[43] HOLOWKA N B, LIEBERMAN D E. Rethinking the evolution of the human foot: insights from experimental research[J]. Journal of experimental biology, 2018, 221(17): jeb174425.
[44] MCKEON P O, HERTEL J, BRAMBLE D, et al. The foot core system: a new paradigm for understanding intrinsic foot muscle function[J]. British journal of sports medicine, 2015, 49(5): 290-290.
[45] KELLY L A, CRESSWELL A G, RACINAIS S, et al. Intrinsic foot muscles have the capacity to control deformation of the longitudinal arch[J]. Journal of The Royal Society Interface, 2014, 11(93): 20131188.
[46] FARRIS D J, BIRCH J, KELLY L. Foot stiffening during the push-off phase of human walking is linked to active muscle contraction, and not the windlass mechanism[J]. Journal of the Royal Society Interface, 2020, 17(168): 20200208.
[47] KELLY L A, LICHTWARK G, CRESSWELL A G. Active regulation of longitudinal arch compression and recoil during walking and running[J]. Journal of the Royal Society Interface, 2015, 12(102): 20141076.
[48] GB14723-2008.下肢假肢通用件[S]. 北京:中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会, 2008.
[49] SCHOLZ M S, BLANCHFIELD J P, BLOOM L D, et al. The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review[J]. Composites Science and Technology, 2011, 71(16): 1791-1803.
[50] SONG Y, CHOI S, KIM S, et al. Performance test for laminated-type prosthetic foot with composite plates[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20: 1777-1786.
[51] AMSAN A N, NASUTION A K, RAMLEE M H. A short review on the cost, design, materials and challenges of the prosthetics leg development and usage[C]//International Conference of CELSciTech 2019-Science and Technology track (ICCELST-ST 2019). Atlantis Press, 2019: 59-64.
[52] HANSON B H. Present and future uses of titanium in engineering[J]. Materials & Design, 1986, 7(6): 301-307.
[53] SMITH M J, KIRK S, TATE J, et al. Material characterization and preservation guidance for a collection of prosthetic limbs developed since 1960[J]. Studies in conservation, 2014, 59(4): 256-267.
[54] ANASS M, BHARGAVA V, NAZZAL M. Proposal of an alternative material for the Energy Storage And Return foot[C]//2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). IEEE, 2017: 1-4.
[55] GUTFLEISCH O. Peg legs andbionic limbs: the development of lower extremity prosthetics[J]. Interdisciplinary Science Reviews, 2003, 28(2): 139-148.
[56] JUNQUEIRA D M, GOMES G F, SILVEIRA M E, et al. Design optimization and development of tubular isogrid composites tubes for lower limb prosthesis[J]. Applied Composite Materials, 2019, 26: 273-297.
[57] KAUFMAN K R, BERNHARDT K. Functional performance differences between carbon fiber and fiberglass prosthetic feet[J]. Prosthetics and Orthotics International, 2021, 45(3): 205-213.
[58] WEBBER C M, KAUFMAN K. Instantaneous stiffness and hysteresis of dynamic elastic response prosthetic feet[J]. Prosthetics and Orthotics International, 2017, 41(5): 463-468.
[59] GB1040.1-2018.塑料拉伸性能的测定[S]. 北京:中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会, 2018.
[60] HART E W, Theory of the tensile test[J]. Acta metallurgica, 1967, 15(2): 351-355.
[61] MUJIKA F, On the difference between flexural moduli obtained by three-point and four-point bending tests[J]. Polymer testing, 2006, 25(2): 214-220.
[62] GAO F, LIU G, CHUNG B L H, et al. Macro fiber composite-based energy harvester for human knee[J]. Applied Physics Letters, 2019, 115(3).
[63] DU Y, SONG C, XIONG J, et al. Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami[J]. Composites Science and Technology, 2019, 174: 94-105.

所在学位评定分委会
材料与化工
国内图书分类号
TM619
来源库
人工提交
成果类型学位论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/779127
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
高岗. 仿生脚板的结构设计与材料力学分析[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233296-高岗-中国科学院深圳理(4564KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[高岗]的文章
百度学术
百度学术中相似的文章
[高岗]的文章
必应学术
必应学术中相似的文章
[高岗]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map