中文版 | English
题名

Effects of Discretization of Decision and Objective Spaces on the Performance of Evolutionary Multi-objective Optimization Algorithms

作者
DOI
发表日期
2019-12-01
ISBN
978-1-7281-2486-5
会议录名称
页码
1826-1833
会议日期
6-9 Dec. 2019
会议地点
Xiamen, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Recently, the discretization of decision and objective spaces has been discussed in the literature. In some studies, it is shown that the decision space discretization improves the performance of evolutionary multi-objective optimization (EMO) algorithms on continuous multi-objective test problems. In other studies, it is shown that the objective space discretization improves the performance on combinatorial multi-objective problems. However, the effect of the simultaneous discretization of both spaces has not been examined in the literature. In this paper, we examine the effects of the decision space discretization, objective space discretization and simultaneous discretization on the performance of NSGA-II through computational experiments on the DTLZ and WFG problems. Using various settings about the number of decision variables and the number of objectives, our experiments are performed on four types of problems: standard problems, large-scale problems, many-objective problems, and large-scale many-objective problems. We show that the decision space discretization has a positive effect for large-scale problems and the objective space discretization has a positive effect for many-objective problems. We also show the discretization of both spaces is useful for large-scale many-objective problems.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Guangdong Innovative and Entrepreneurial Research Team Program[2017ZT07X386] ; [2017KSYS008] ; Shenzhen Peacock Plan[KQTD2016112514355531] ; [ZDSYS201703031748284] ; National Natural Science Foundation of China[61876075]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000555467201134
EI入藏号
20201108276763
EI主题词
Artificial intelligence ; Evolutionary algorithms
EI分类号
Artificial Intelligence:723.4 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85080913646
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9002906
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/73762
专题南方科技大学
工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology (SUSTech),Shenzhen Key Laboratory of Computational Intelligence,University Key Laboratory of Evolving,Intelligent Systems of Guangdong Province,Shenzhen,China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Chen,Weiyu,Ishibuchi,Hisao,Shang,Ke. Effects of Discretization of Decision and Objective Spaces on the Performance of Evolutionary Multi-objective Optimization Algorithms[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1826-1833.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Weiyu]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
百度学术
百度学术中相似的文章
[Chen,Weiyu]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
必应学术
必应学术中相似的文章
[Chen,Weiyu]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map