题名 | Effects of Discretization of Decision and Objective Spaces on the Performance of Evolutionary Multi-objective Optimization Algorithms |
作者 | |
DOI | |
发表日期 | 2019-12-01
|
ISBN | 978-1-7281-2486-5
|
会议录名称 | |
页码 | 1826-1833
|
会议日期 | 6-9 Dec. 2019
|
会议地点 | Xiamen, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Recently, the discretization of decision and objective spaces has been discussed in the literature. In some studies, it is shown that the decision space discretization improves the performance of evolutionary multi-objective optimization (EMO) algorithms on continuous multi-objective test problems. In other studies, it is shown that the objective space discretization improves the performance on combinatorial multi-objective problems. However, the effect of the simultaneous discretization of both spaces has not been examined in the literature. In this paper, we examine the effects of the decision space discretization, objective space discretization and simultaneous discretization on the performance of NSGA-II through computational experiments on the DTLZ and WFG problems. Using various settings about the number of decision variables and the number of objectives, our experiments are performed on four types of problems: standard problems, large-scale problems, many-objective problems, and large-scale many-objective problems. We show that the decision space discretization has a positive effect for large-scale problems and the objective space discretization has a positive effect for many-objective problems. We also show the discretization of both spaces is useful for large-scale many-objective problems. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Guangdong Innovative and Entrepreneurial Research Team Program[2017ZT07X386]
; [2017KSYS008]
; Shenzhen Peacock Plan[KQTD2016112514355531]
; [ZDSYS201703031748284]
; National Natural Science Foundation of China[61876075]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000555467201134
|
EI入藏号 | 20201108276763
|
EI主题词 | Artificial intelligence
; Evolutionary algorithms
|
EI分类号 | Artificial Intelligence:723.4
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85080913646
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9002906 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://kc.sustech.edu.cn/handle/2SGJ60CL/73762 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology (SUSTech),Shenzhen Key Laboratory of Computational Intelligence,University Key Laboratory of Evolving,Intelligent Systems of Guangdong Province,Shenzhen,China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Chen,Weiyu,Ishibuchi,Hisao,Shang,Ke. Effects of Discretization of Decision and Objective Spaces on the Performance of Evolutionary Multi-objective Optimization Algorithms[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1826-1833.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论