中文版 | English
题名

Effect of Solution Information Sharing between Tasks on the Search Ability of Evolutionary Multiobjective Multitasking Algorithms

作者
DOI
发表日期
2019-12-01
ISBN
978-1-7281-2486-5
会议录名称
页码
2671-2678
会议日期
6-9 Dec. 2019
会议地点
Xiamen, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
A multitask multiobjective optimization problem (MTMOP) has multiple multiobjective problems to be solved simultaneously (i.e., multitasking of multiple multiobjective problems). One approach to such an MTMOP is evolutionary multiobjective multitasking (EMOMT). EMOMT algorithms solve multiple tasks simultaneously in a cooperative manner. They are evolutionary algorithms with multiple sub-populations. Each sub-population corresponds to a single task. During the evolutionary search, the information on each solution is shared with the sub-populations. Some EMOMT algorithms have been developed by focusing on solution information sharing. However, the effect of sharing the solution information on the search ability of EMOMT algorithms is not well examined yet. Through the examination of this effect, it is expected that better EMOMT algorithms than existing ones can be developed. In our previous study, we proposed a framework of island model-based evolutionary single-objective multitasking algorithms. Using our island model, we can analyze the effect of solution information sharing. In this paper, as an extension of our previous study, we develop an island model-based EMOMT algorithm framework for MTMOPs. Through computational experiments under various parameter settings, we examine the effect of solution information sharing on the search ability of our island model.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07N386] ; Shenzhen Peacock Plan[KOTD201611.2514355531] ; Science and Technology Innovation Committee Foundation of Shenzhen[ZDSYS201703031748284] ; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000555467202107
EI入藏号
20201108276938
EI主题词
Artificial intelligence ; Information analysis ; Information dissemination ; Multiobjective optimization ; Multitasking
EI分类号
Digital Computers and Systems:722.4 ; Artificial Intelligence:723.4 ; Information Sources and Analysis:903.1 ; Information Dissemination:903.2 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85080935132
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9002984
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/73761
专题南方科技大学
作者单位
1.Osaka Prefecture University,Graduate School of Engineering,Sakai, Osaka,Japan
2.Southern University of Science and Technology,Shenzhen Key Laboratory of Computational Intelligence,University Key Laboratory of Evolving,Intelligent Systems of Guangdong Province,Shenzhen,China
推荐引用方式
GB/T 7714
Hashimoto,Ryuichi,Masuyama,Naoki,Nojima,Yusuke,et al. Effect of Solution Information Sharing between Tasks on the Search Ability of Evolutionary Multiobjective Multitasking Algorithms[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:2671-2678.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hashimoto,Ryuichi]的文章
[Masuyama,Naoki]的文章
[Nojima,Yusuke]的文章
百度学术
百度学术中相似的文章
[Hashimoto,Ryuichi]的文章
[Masuyama,Naoki]的文章
[Nojima,Yusuke]的文章
必应学术
必应学术中相似的文章
[Hashimoto,Ryuichi]的文章
[Masuyama,Naoki]的文章
[Nojima,Yusuke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map