题名 | Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence |
作者 | |
通讯作者 | Wang,Jianchun |
发表日期 | 2020
|
DOI | |
发表期刊 | |
ISSN | 21583226
|
EISSN | 2158-3226
|
卷号 | 10期号:1 |
摘要 | In this work, subgrid-scale (SGS) stress and SGS heat flux of compressible isotropic turbulence are reconstructed by a spatially multi-scale artificial neural network (SMSANN). The input features of the SMSANN model are based on the first order derivatives of the primary and secondary filtered variables at different spatial locations. The SMSANN model performs much better than the gradient model in the a priori test, including the correlation coefficients and relative errors. Specifically, the correlation coefficients of the SGS stress and SGS heat flux can be larger than 0.997 and the relative errors of the SGS stress and SGS heat flux can be smaller than 0.08 for the SMSANN model. In an a posteriori analysis, the performance of the SMSANN model has been evaluated by a detailed comparison of the results of the SMSANN model and the dynamic mixed model (DMM) at a grid resolution of 64 with the Taylor Reynolds number Re ranging from 180 to 250. The SMSANN model shows an advantage over the DMM in the prediction of the spectra of velocity and temperature. Besides, the SMSANN model can accurately reconstruct the statistical properties of velocity and temperature and the instantaneous flow structures. An artificial neural network with consideration of spatial multiscale can deepen our understanding of large eddy simulation modeling. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Southern University of Science and Technology[]
; National Natural Science Foundation of China[91752201]
; China Academy of Space Technology[2016QNR C001]
; National Natural Science Foundation of China[]
; Science, Technology and Innovation Commission of Shenzhen Municipality[]
|
WOS研究方向 | Science & Technology - Other Topics
; Materials Science
; Physics
|
WOS类目 | Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
; Physics, Applied
|
WOS记录号 | WOS:000519589500002
|
出版者 | |
EI入藏号 | 20200508109002
|
EI主题词 | Large eddy simulation
; Neural networks
; Reynolds equation
; Reynolds number
; Turbulence
; Turbulent flow
|
EI分类号 | Fluid Flow:631
; Fluid Flow, General:631.1
; Heat Transfer:641.2
; Mathematics:921
|
Scopus记录号 | 2-s2.0-85078675340
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:25
|
成果类型 | 期刊论文 |
条目标识符 | http://kc.sustech.edu.cn/handle/2SGJ60CL/66569 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Shenzhen Key Laboratory of Complex Aerospace Flows,Center for Complex Flows and Soft Matter Research,Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.School of Power and Mechanical Engineering,Wuhan University,Wuhan,430072,China 3.State Key Laboratory of Turbulence and Complex Systems,Peking University,Beijing,100871,China |
第一作者单位 | 力学与航空航天工程系 |
通讯作者单位 | 力学与航空航天工程系 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Xie,Chenyue,Wang,Jianchun,Li,Hui,et al. Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence[J]. AIP Advances,2020,10(1).
|
APA |
Xie,Chenyue,Wang,Jianchun,Li,Hui,Wan,Minping,&Chen,Shiyi.(2020).Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence.AIP Advances,10(1).
|
MLA |
Xie,Chenyue,et al."Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence".AIP Advances 10.1(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论