中文版 | English
题名

Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence

作者
通讯作者Wang,Jianchun
发表日期
2020
DOI
发表期刊
ISSN
21583226
EISSN
2158-3226
卷号10期号:1
摘要
In this work, subgrid-scale (SGS) stress and SGS heat flux of compressible isotropic turbulence are reconstructed by a spatially multi-scale artificial neural network (SMSANN). The input features of the SMSANN model are based on the first order derivatives of the primary and secondary filtered variables at different spatial locations. The SMSANN model performs much better than the gradient model in the a priori test, including the correlation coefficients and relative errors. Specifically, the correlation coefficients of the SGS stress and SGS heat flux can be larger than 0.997 and the relative errors of the SGS stress and SGS heat flux can be smaller than 0.08 for the SMSANN model. In an a posteriori analysis, the performance of the SMSANN model has been evaluated by a detailed comparison of the results of the SMSANN model and the dynamic mixed model (DMM) at a grid resolution of 64 with the Taylor Reynolds number Re ranging from 180 to 250. The SMSANN model shows an advantage over the DMM in the prediction of the spectra of velocity and temperature. Besides, the SMSANN model can accurately reconstruct the statistical properties of velocity and temperature and the instantaneous flow structures. An artificial neural network with consideration of spatial multiscale can deepen our understanding of large eddy simulation modeling.
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
第一 ; 通讯
资助项目
Southern University of Science and Technology[] ; National Natural Science Foundation of China[91752201] ; China Academy of Space Technology[2016QNR C001] ; National Natural Science Foundation of China[] ; Science, Technology and Innovation Commission of Shenzhen Municipality[]
WOS研究方向
Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目
Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号
WOS:000519589500002
出版者
EI入藏号
20200508109002
EI主题词
Large eddy simulation ; Neural networks ; Reynolds equation ; Reynolds number ; Turbulence ; Turbulent flow
EI分类号
Fluid Flow:631 ; Fluid Flow, General:631.1 ; Heat Transfer:641.2 ; Mathematics:921
Scopus记录号
2-s2.0-85078675340
来源库
Scopus
引用统计
被引频次[WOS]:25
成果类型期刊论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/66569
专题工学院_力学与航空航天工程系
作者单位
1.Shenzhen Key Laboratory of Complex Aerospace Flows,Center for Complex Flows and Soft Matter Research,Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.School of Power and Mechanical Engineering,Wuhan University,Wuhan,430072,China
3.State Key Laboratory of Turbulence and Complex Systems,Peking University,Beijing,100871,China
第一作者单位力学与航空航天工程系
通讯作者单位力学与航空航天工程系
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Xie,Chenyue,Wang,Jianchun,Li,Hui,et al. Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence[J]. AIP Advances,2020,10(1).
APA
Xie,Chenyue,Wang,Jianchun,Li,Hui,Wan,Minping,&Chen,Shiyi.(2020).Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence.AIP Advances,10(1).
MLA
Xie,Chenyue,et al."Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence".AIP Advances 10.1(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xie,Chenyue]的文章
[Wang,Jianchun]的文章
[Li,Hui]的文章
百度学术
百度学术中相似的文章
[Xie,Chenyue]的文章
[Wang,Jianchun]的文章
[Li,Hui]的文章
必应学术
必应学术中相似的文章
[Xie,Chenyue]的文章
[Wang,Jianchun]的文章
[Li,Hui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map