中文版 | English
题名

双原子催化剂TM2@C3N4电催化CO2生成双碳产物的理论探究

其他题名
THEORETICAL STUDY ON CO2 ELECTROREDUCITON TO C2 PRODUCTS ON TM2@C3N4 DIATOMIC CATALYSTS
姓名
姓名拼音
JIA Yuting
学号
12132745
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
李隽
导师单位
化学系
论文答辩日期
2023-05-23
论文提交日期
2023-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

二氧化碳的资源化利用对于缓解温室效应、实现国家“双碳目标”具有重要的意义,为实现碳循环和能源长期储存提供了可行途径。其中,对于二氧化碳还原反应机理的研究是指导生产不同碳产品的重要理论基础。近年来,单原子催化剂由于其有均匀分散、丰富、可调控的活性金属位点而成为有潜力的电化学反应催化剂;双原子催化剂除具有单原子催化剂的优点外,其两个金属原子活性位点间的协同作用使得其可能具备更优秀的催化活性。本课题应用密度泛函理论计算系统地进行了由g-C3N4负载同核和异核双金属原子组成的催化剂(TM2@C3N4)催化二氧化碳还原反应的研究。通过计算证实该系列双原子催化剂均具有较好的稳定性,并且对二氧化碳有很强的活化吸附作用。进一步系统研究了CO2电催化还原形成多碳产物的反应自由能路径,包括CO-COCO-CHOCHO-CHOCO-COH耦合方式。本课题先考察了15种催化剂碳碳耦合前各耦合方式进行反应所需的最低电势能和碳碳耦合过程中的自由能变化,筛选得到1种同核催化剂和5种异核催化剂进行完整的反应路径计算,以最终确定催化剂的极限电势。在分析反应路径时,考虑了异核双原子催化剂对中间体的异核吸附效应。最终筛选得到了五种具有低极限电势的高活性异核双原子催化剂MnFe@C3N4MnCo@C3N4MnNi@C3N4MnCu@C3N4FeCo@C3N4,同时可以有效抑制析氢竞争反应的进行,有望成为高校的二氧化碳的催化剂材料。本论文的研究对于实验合成高性能二氧化碳还原催化剂具有一定的指导意义,还为其它理论计算中探讨不同耦合方式、异核吸附、反应路径筛选等问题提供了参考。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] WANG G, CHEN J, DING Y, et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products[J]. Chem Soc Rev, 2021, 50(8): 4993-5061.
[2] RESASCO J, ABILD-PEDERSEN F, HAHN C, et al. Enhancing the connection between computation and experiments in electrocatalysis[J]. Nature Catalysis, 2022, 5(5): 374-381.
[3] QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nat Chem, 2011, 3(8): 634-641.
[4] CALLE-VALLEJO F, KOPER M T. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes[J]. Angew Chem Int Ed Engl, 2013, 52(28): 7282-7285.
[5] LUO W, NIE X, JANIK M J, et al. Facet Dependence of CO2 Reduction Paths on Cu Electrodes[J]. ACS Catalysis, 2015, 6(1): 219-229.
[6] MONTOYA J H, SHI C, CHAN K, et al. Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction[J]. J Phys Chem Lett, 2015, 6(11): 2032-2037.
[7] PETERSON A A, ABILD-PEDERSEN F, STUDT F, et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J]. Energy & Environmental Science, 2010, 3(9): 1311-1315.
[8] KUHL K P, CAVE E R, ABRAM D N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5(5): 7050–7059.
[9] KORTLEVER R, SHEN J, SCHOUTEN K J, et al. Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide[J]. J Phys Chem Lett, 2015, 6(20): 4073-4082.
[10] LUM Y, CHENG T, GODDARD W A, 3RD, et al. Electrochemical CO Reduction Builds Solvent Water into Oxygenate Products[J]. J Am Chem Soc, 2018, 140(30): 9337-9340.
[11] CHENG T, XIAO H, GODDARD W A, 3RD. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0[J]. J Phys Chem Lett, 2015, 6(23): 4767-4773.
[12] FEASTER J T, SHI C, CAVE E R, et al. Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes[J]. ACS Catalysis, 2017, 7(7): 4822-4827.
[13] CHERNYSHOVA I V, SOMASUNDARAN P, PONNURANGAM S. On the origin of the elusive first intermediate of CO2 electroreduction[J]. Proc Natl Acad Sci U S A, 2018, 115(40): E9261-E9270.
[14] GARZA A J, BELL A T, HEAD-GORDON M. Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products[J]. ACS Catalysis, 2018, 8(2): 1490-1499.
[15] GATTRELL M, GUPTA N, CO A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper[J]. Journal of Electroanalytical Chemistry, 2006, 594(1): 1-19.
[16] KUHL K P, HATSUKADE T, CAVE E R, et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces[J]. J Am Chem Soc, 2014, 136(40): 14107-14113.
[17] BIRDJA Y Y, KOPER M T. The Importance of Cannizzaro-Type Reactions during Electrocatalytic Reduction of Carbon Dioxide[J]. J Am Chem Soc, 2017, 139(5): 2030-2034.
[18] VASILEFF A, XU C, JIAO Y, et al. Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction[J]. Chem, 2018, 4(8): 1809-1831.
[19] LIU J, ZHU D, ZHENG Y, et al. Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions[J]. ACS Catalysis, 2018, 8(7): 6707-6732.
[20] JIAO Y, ZHENG Y, CHEN P, et al. Molecular Scaffolding Strategy with Synergistic Active Centers To Facilitate Electrocatalytic CO2 Reduction to Hydrocarbon/Alcohol[J]. Journal of the American Chemical Society[J], 2017, 139(49): 18093-18100.
[21] BAYATSARMADI B, ZHENG Y, VASILEFF A, et al. Recent Advances in Atomic Metal Doping of Carbon-based Nanomaterials for Energy Conversion[J]. Small, 2017, 13(21): 1700191-170209.
[22] YANG S, TAK Y J, KIM J, et al. Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction[J]. ACS Catalysis, 2017, 7(2): 1301-1307.
[23] CHANG T Y, TANAKA Y, ISHIKAWA R, et al. Direct imaging of Pt single atoms adsorbed on TiO2 (110) surfaces[J]. Nano Lett, 2014, 14(1): 134-138.
[24] QU Y, CHEN B, LI Z, et al. Thermal Emitting Strategy to Synthesize Atomically Dispersed Pt Metal Sites from Bulk Pt Metal[J]. J Am Chem Soc, 2019, 141(11): 4505-4509.
[25] PAN Y, ZHANG C, LIU Z, et al. Structural Regulation with Atomic-Level Precision: From Single-Atomic Site to Diatomic and Atomic Interface Catalysis[J]. Matter, 2020, 2(1): 78-110.
[26] YANG X, XIE Z, LI Y, et al. Enantioselective aerobic oxidative cross-dehydrogenative coupling of glycine derivatives with ketones and aldehydes via cooperative photoredox catalysis and organocatalysis[J]. Chem Sci, 2020, 11(18): 4741-4746.
[27] LI Y, SU H, CHAN S H, et al. CO2 Electroreduction Performance of Transition Metal Dimers Supported on Graphene: A Theoretical Study[J]. ACS Catalysis, 2015, 5(11): 6658-6664.
[28] LIU Y, WU X, GUO X, et al. Modulated FeCo nanoparticle in situ growth on the carbon matrix for high-performance oxygen catalysts[J]. Materials Today Energy, 2021, 19: 100610-100617.
[29] LI H, WANG L, DAI Y, et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation[J]. Nat Nanotechnol, 2018, 13(5): 411-417.
[30] JIAO J, LIN R, LIU S, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2[J]. Nat Chem, 2019, 11(3): 222-228.
[31] ZHAO R, LIANG Z, GAO S, et al. Puffing Up Energetic Metal-Organic Frameworks to Large Carbon Networks with Hierarchical Porosity and Atomically Dispersed Metal Sites[J]. Angew Chem Int Ed Engl, 2019, 58(7): 1975-1979.
[32] REN W, TAN X, YANG W, et al. Isolated Diatomic Ni-Fe Metal-Nitrogen Sites for Synergistic Electroreduction of CO2[J]. Angew Chem Int Ed Engl, 2019, 58(21): 6972-6976.
[33] LUO G, JING Y, LI Y. Rational design of dual-metal-site catalysts for electroreduction of carbon dioxide[J]. Journal of Materials Chemistry A, 2020, 8(31): 15809-15815.
[34] OUYANG Y, SHI L, BAI X, et al. Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts[J]. Chem Sci, 2020, 11(7): 1807-1813.
[35] MIKKELSEN M, JøRGENSEN M, KREBS F C. The teraton challenge. A review of fixation and transformation of carbon dioxide[J]. Energy Environ Sci, 2010, 3(1): 43-81.
[36] WANG Q, LUO J, ZHONG Z, et al. CO2 capture by solid adsorbents and their applications: current status and new trends[J]. Energy Environ Sci, 2011, 4(1): 42-55.
[37] DING M, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chem Soc Rev, 2019, 48(10): 2783-2828.
[38] BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176.
[39] WU J, HUANG Y, YE W, et al. CO2 Reduction: From the Electrochemical to Photochemical Approach[J]. Adv Sci (Weinh), 2017, 4(11): 1700194.
[40] VOIRY D, SHIN H S, LOH K P, et al. Low-dimensional catalysts for hydrogen evolution and CO2 reduction[J]. Nature Reviews Chemistry, 2018, 2(1).
[41] BIRDJA Y Y, PéREZ-GALLENT E, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4(9): 732-745.
[42] WANG L, CHEN W, ZHANG D, et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms[J]. Chem Soc Rev, 2019, 48(21): 5310-5349.
[43] DE LUNA P, QUINTERO-BERMUDEZ R, DINH C-T, et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction[J]. Nature Catalysis, 2018, 1(2): 103-110.
[44] ROBERTS F S, KUHL K P, NILSSON A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts[J]. Angew Chem Int Ed Engl, 2015, 54(17): 5179-5182.
[45] JIANG K, SANDBERG R B, AKEY A J, et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction[J]. Nature Catalysis, 2018, 1(2): 111-119.
[46] XIAO H, CHENG T, GODDARD W A, 3RD. Atomistic Mechanisms Underlying Selectivities in C(1) and C(2) Products from Electrochemical Reduction of CO on Cu(111)[J]. J Am Chem Soc, 2017, 139(1): 130-136.
[47] CHENG T, XIAO H, GODDARD W A, 3RD. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K[J]. Proc Natl Acad Sci U S A, 2017, 114(8): 1795-1800.
[48] ZHAO D, ZHUANG Z, CAO X, et al. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation[J]. Chem Soc Rev, 2020, 49(7): 2215-2264.
[49] CHEN Z W, CHEN L X, YANG C C, et al. Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges[J]. Journal of Materials Chemistry A, 2019, 7(8): 3492-3515.
[50] ZHU Y, SOKOLOWSKI J, SONG X, et al. Engineering Local Coordination Environments of Atomically Dispersed and Heteroatom‐Coordinated Single Metal Site Electrocatalysts for Clean Energy‐Conversion[J]. Advanced Energy Materials, 2019, 10(11): 1902844-1902872.
[51] LIANG Z, GUO W, ZHAO R, et al. Engineering atomically dispersed metal sites for electrocatalytic energy conversion[J]. Nano Energy, 2019, 64: 103917-103929.
[52] LI X, BI W, CHEN M, et al. Exclusive Ni-N(4) Sites Realize Near-Unity CO Selectivity for Electrochemical CO2 Reduction[J]. J Am Chem Soc, 2017, 139(42): 14889-14892.
[53] ZHAO C, WANG Y, LI Z, et al. Solid-Diffusion Synthesis of Single-Atom Catalysts Directly from Bulk Metal for Efficient CO2 Reduction[J]. Joule, 2019, 3(2): 584-594.
[54] BACK S, LIM J, KIM N Y, et al. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements[J]. Chem Sci, 2017, 8(2): 1090-1096.
[55] LIU J-H, YANG L-M, GANZ E. Electrocatalytic reduction of CO2 by two-dimensional transition metal porphyrin sheets[J]. Journal of Materials Chemistry A, 2019, 7(19): 11944-11952.
[56] CHEN C, TANG C, XU W, et al. Design of iron atom modified thiophene-linked metalloporphyrin 2D conjugated microporous polymer as CO2 reduction photocatalyst[J]. Phys Chem Chem Phys, 2018, 20(14): 9536-9542.
[57] MAO X, TANG C, HE T, et al. Computational screening of MN(4) (M = Ti-Cu) based metal organic frameworks for CO2 reduction using the d-band centre as a descriptor[J]. Nanoscale, 2020, 12(10): 6188-6194.
[58] LIU J-H, YANG L-M, GANZ E. Efficient and Selective Electroreduction of CO2 by Single-Atom Catalyst Two-Dimensional TM–Pc Monolayers[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15494-15502.
[59] KOUR G, MAO X, DU A. Computational Screening of Transition Metal–Phthalocyanines for the Electrochemical Reduction of Carbon Dioxide[J]. The Journal of Physical Chemistry C, 2020, 124(14): 7708-7715.
[60] LIU J-H, YANG L-M, GANZ E. Electrochemical reduction of CO2 by single atom catalyst TM–TCNQ monolayers[J]. Journal of Materials Chemistry A, 2019, 7(8): 3805-3814.
[61] LI J, YAN P, LI K, et al. Cu supported on polymeric carbon nitride for selective CO2 reduction into CH4: a combined kinetics and thermodynamics investigation[J]. Journal of Materials Chemistry A, 2019, 7(28): 17014-17021.
[62] AO C, FENG B, QIAN S, et al. Theoretical study of transition metals supported on g-C3N4 as electrochemical catalysts for CO2 reduction to CH3OH and CH4[J]. Journal of CO2 Utilization, 2020, 36: 116-123.
[63] YUAN H, LI Z, ZENG X C, et al. Descriptor-Based Design Principle for Two-Dimensional Single-Atom Catalysts: Carbon Dioxide Electroreduction[J]. J Phys Chem Lett, 2020, 11(9): 3481-3487.
[64] ZHOU P, CHAO Y, LV F, et al. Designing noble metal single-atom-loaded two-dimension photocatalyst for N2 and CO2 reduction via anion vacancy engineering[J]. Sci Bull (Beijing), 2020, 65(9): 720-725.
[65] GUO C, ZHANG T, DENG X, et al. Electrochemical CO2 Reduction to C1 Products on Single Nickel/Cobalt/Iron-Doped Graphitic Carbon Nitride: A DFT Study[J]. ChemSusChem, 2019, 12(23): 5126-5132.
[66] LIU J H, YANG L M, GANZ E. Efficient electrocatalytic reduction of carbon dioxide by metal-doped beta(12)-borophene monolayers[J]. RSC Adv, 2019, 9(47): 27710-27719.
[67] TAN X, TAHINI H A, ARANDIYAN H, et al. Electrocatalytic Reduction of Carbon Dioxide to Methane on Single Transition Metal Atoms Supported on a Defective Boron Nitride Monolayer: First Principle Study[J]. Advanced Theory and Simulations, 2018, 2(3): 1800094- 1800103.
[68] CUI Q, QIN G, WANG W, et al. Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion[J]. Beilstein J Nanotechnol, 2019, 10: 540-548.
[69] WANG J, LIU W, LUO G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction[J]. Energy & Environmental Science, 2018, 11(12): 3375-3379.
[70] WANG J, HUANG Z, LIU W, et al. Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction[J]. J Am Chem Soc, 2017, 139(48): 17281-17284.
[71] CHEN Z W, YAN J M, JIANG Q. Single or Double: Which Is the Altar of Atomic Catalysts for Nitrogen Reduction Reaction?[J]. Small Methods, 2018, 3(6): 1800291- 1800298.
[72] GUO X, GU J, LIN S, et al. Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts[J]. J Am Chem Soc, 2020, 142(12): 5709-5721.
[73] LIANG Z, LUO M, CHEN M, et al. Evaluating the catalytic activity of transition metal dimers for the oxygen reduction reaction[J]. J Colloid Interface Sci, 2020, 568: 54-62.
[74] HUNTER M A, FISCHER J M T A, YUAN Q, et al. Evaluating the Catalytic Efficiency of Paired, Single-Atom Catalysts for the Oxygen Reduction Reaction[J]. ACS Catalysis, 2019, 9(9): 7660-7667.
[75] ZHAO J, ZHAO J, LI F, et al. Copper Dimer Supported on a C2N Layer as an Efficient Electrocatalyst for CO2 Reduction Reaction: A Computational Study[J]. The Journal of Physical Chemistry C, 2018, 122(34): 19712-19721.
[76] HUANG Q, LIU H, AN W, et al. Synergy of a Metallic NiCo Dimer Anchored on a C2N–Graphene Matrix Promotes the Electrochemical CO2 Reduction Reaction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19113-19121.
[77] CHEN S, YUAN H, MOROZOV S I, et al. Design of a Graphene Nitrene Two-Dimensional Catalyst Heterostructure Providing a Well-Defined Site Accommodating One to Three Metals, with Application to CO2 Reduction Electrocatalysis for the Two-Metal Case[J]. J Phys Chem Lett, 2020, 11(7): 2541-2549.
[78] ZHAO Y, ZHOU S, ZHAO J. Selective C-C Coupling by Spatially Confined Dimeric Metal Centers[J]. iScience, 2020, 23(5): 101051.
[79] MATVEEV A, STAUFER M, MAYER M, et al. Density functional study of small molecules and transition-metal carbonyls using revised PBE functionals[J]. International Journal of Quantum Chemistry, 1999, 75(4-5): 863-873.
[80] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem, 2006, 27(15): 1787-1799.
[81] GOERIGK L. How Do DFT-DCP, DFT-NL, and DFT-D3 Compare for the Description of London-Dispersion Effects in Conformers and General Thermochemistry?[J]. J Chem Theory Comput, 2014, 10(3): 968-980.
[82] HENKELMAN G, UBERUAGA B P, JóNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901-9904.
[83] ROSSMEISL J, SKúLASON E, BJöRKETUN M E, et al. Modeling the electrified solid–liquid interface[J]. Chemical Physics Letters, 2008, 466(1-3): 68-71.

所在学位评定分委会
化学
国内图书分类号
O643.3
来源库
人工提交
成果类型学位论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/545168
专题理学院_化学系
推荐引用方式
GB/T 7714
贾雨婷. 双原子催化剂TM2@C3N4电催化CO2生成双碳产物的理论探究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132745-贾雨婷-化学系.pdf(6257KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[贾雨婷]的文章
百度学术
百度学术中相似的文章
[贾雨婷]的文章
必应学术
必应学术中相似的文章
[贾雨婷]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map