中文版 | English
题名

Analysis of evolutionary multi-tasking as an island model

作者
DOI
发表日期
2018-07-06
会议录名称
页码
1894-1897
会议地点
Kyoto, Japan
出版者
摘要
Recently, an idea of evolutionary multi-tasking has been proposed and applied to various types of optimization problems. The basic idea of evolutionary multi-tasking is to simultaneously solve multiple optimization problems (i.e., tasks) in a cooperative manner by a single run of an evolutionary algorithm. For this purpose, each individual in a population has its own task. This means that a population of individuals can be viewed as being divided into multiple sub-populations. The number of sub-populations is the same as the number of tasks to be solved. In this paper, first we explain that a multi-factorial evolutionary algorithm (MFEA), which is a representative algorithm of evolutionary multi-tasking, can be viewed as a special island model. MFEA has the following two features: (i) Crossover is performed not only within an island but also between islands, and (ii) no migration is performed between islands. Information of individuals in one island is transferred to another island through inter-island crossover. Next, we propose a simple implementation of evolutionary multi-tasking in the framework of the standard island model. Then, we compare our island model with MFEA through computational experiments. Promising results are obtained by our implementation of evolutionary multi-tasking.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20183405711347
EI主题词
Calculations ; Multitasking ; Optimization
EI分类号
Digital Computers and Systems:722.4 ; Mathematics:921 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85051466738
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/44245
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Intelligent Systems, Graduate School of Engineering, Osaka Prefecture University, ,Osaka,599-8531,Japan
2.Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, ,Shenzhen,518005,China
推荐引用方式
GB/T 7714
Hashimoto,Ryuichi,Masuyama,Naoki,Ishibuchi,Hisao,et al. Analysis of evolutionary multi-tasking as an island model[C]:Association for Computing Machinery, Inc,2018:1894-1897.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hashimoto,Ryuichi]的文章
[Masuyama,Naoki]的文章
[Ishibuchi,Hisao]的文章
百度学术
百度学术中相似的文章
[Hashimoto,Ryuichi]的文章
[Masuyama,Naoki]的文章
[Ishibuchi,Hisao]的文章
必应学术
必应学术中相似的文章
[Hashimoto,Ryuichi]的文章
[Masuyama,Naoki]的文章
[Ishibuchi,Hisao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map