中文版 | English
题名

A Novel Dual-Stage Dual-Population Evolutionary Algorithm for Constrained Multi-Objective Optimization

作者
发表日期
2021
DOI
发表期刊
ISSN
1089-778X
EISSN
1941-0026
卷号PP期号:99页码:1-1
摘要
In addition to the search for feasible solutions, the utilization of informative infeasible solutions is important for solving constrained multi-objective optimization problems (CMOPs). However, most of the existing constrained multi-objective evolutionary algorithms (CMOEAs) cannot effectively explore and exploit those solutions, and therefore exhibit poor performance when facing problems with large infeasible regions. To address the issue, this paper proposes a novel method called DD-CMOEA, which features dual stages (i.e., exploration and exploitation) and dual populations. Specifically, the two populations, called mainPop and auxPop, first individually evolve with and without considering the constraints, responsible for exploring feasible and infeasible solutions, respectively. Then, in the exploitation stage, mainPop provides information about the location of feasible regions, which facilitates auxPop to find and exploit surrounding infeasible solutions. The promising infeasible solutions obtained by auxPop in turn help mainPop converge better toward the Pareto-optimal front. Extensive experiments on three well-known test suites and a real-world case study fully demonstrate that DD-CMOEA is more competitive than five state-of-the-art CMOEAs.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China["61773390","72071205","61876075"] ; Hunan Youth Elite Program[2018RS3081] ; National Science Fund for Outstanding Young Scholars[62122093] ; Scientific Key Research Project of National University of Defense Technology[ZZKY-ZX-11-04] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Stable Support Plan Program of Shenzhen Natural Science Fund[20200925174447003] ; Shenzhen Science and Technology Program[KQTD2016112514355531]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000862385200027
出版者
EI入藏号
20214911286118
EI主题词
Artificial intelligence ; Constrained optimization ; Evolutionary algorithms ; Multiobjective optimization ; Natural resources exploration ; Pareto principle
EI分类号
Artificial Intelligence:723.4 ; Optimization Techniques:921.5 ; Systems Science:961
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85120551208
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9627876
引用统计
被引频次[WOS]:35
成果类型期刊论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/258182
专题工学院_计算机科学与工程系
作者单位
1.College of Systems Engineering, National University of Defense Technology, and Hunan Key Laboratory of Multi-Energy System Intelligent Interconnection Technology (HKL-MESIT), Changsha 410073, China. (e-mail: mmengjun@gmail.com)
2.College of Systems Engineering, National University of Defense Technology, and Hunan Key Laboratory of Multi-Energy System Intelligent Interconnection Technology (HKL-MESIT), Changsha 410073, China.
3.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
推荐引用方式
GB/T 7714
Ming,Mengjun,Wang,Rui,Ishibuchi,Hisao,et al. A Novel Dual-Stage Dual-Population Evolutionary Algorithm for Constrained Multi-Objective Optimization[J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,2021,PP(99):1-1.
APA
Ming,Mengjun,Wang,Rui,Ishibuchi,Hisao,&Zhang,Tao.(2021).A Novel Dual-Stage Dual-Population Evolutionary Algorithm for Constrained Multi-Objective Optimization.IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,PP(99),1-1.
MLA
Ming,Mengjun,et al."A Novel Dual-Stage Dual-Population Evolutionary Algorithm for Constrained Multi-Objective Optimization".IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION PP.99(2021):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ming,Mengjun]的文章
[Wang,Rui]的文章
[Ishibuchi,Hisao]的文章
百度学术
百度学术中相似的文章
[Ming,Mengjun]的文章
[Wang,Rui]的文章
[Ishibuchi,Hisao]的文章
必应学术
必应学术中相似的文章
[Ming,Mengjun]的文章
[Wang,Rui]的文章
[Ishibuchi,Hisao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map