中文版 | English
题名

Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence

作者
通讯作者Wang, Jianchun; Chen, Shiyi
发表日期
2019-08
DOI
发表期刊
ISSN
1070-6631
EISSN
1089-7666
卷号31期号:8
摘要
In this work, the subgrid-scale (SGS) stress and the SGS heat flux of compressible isotropic turbulence are modeled by an artificial neural network (ANN) mixed model (ANNMM), which maintains both functional and structural performances. The functional form of the mixed model combining the gradient model and the Smagorinsky's eddy viscosity model is imposed, and the ANN is used to calculate the model coefficients of the SGS anisotropy stress, SGS energy, and SGS heat flux. It is shown that the ANNMM can reconstruct the SGS terms more accurately than the gradient model in the a priori test. Specifically, the ANNMM almost recovers the average values of the SGS energy flux and SGS energy flux conditioned on the normalized filtered velocity divergence. In an a posteriori analysis, the ANNMM shows advantage over the dynamic Smagorinsky model (DSM) and dynamic mixed model (DMM) in the prediction of the spectra of velocity and temperature, which almost overlap with the filtered direct numerical simulation data, while the DSM and DMM suffer from the problem of the typical tilted spectral distribution. Besides, the ANNMM predicts the probability density functions of SGS energy flux much better than DSM and DMM. ANN with functional model forms can enlighten and deepen our understanding of large eddy simulation modeling. Published under license by AIP Publishing.
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Young Elite Scientist Sponsorship Program by CAST[2016QNRC001]
WOS研究方向
Mechanics ; Physics
WOS类目
Mechanics ; Physics, Fluids & Plasmas
WOS记录号
WOS:000483888900058
出版者
EI入藏号
20193507358769
EI主题词
Heat flux ; Neural networks ; Probability density function ; Turbulence
EI分类号
Fluid Flow:631 ; Heat Transfer:641.2 ; Mathematics:921 ; Probability Theory:922.1
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:66
成果类型期刊论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/25398
专题工学院_力学与航空航天工程系
作者单位
1.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen Key Lab Complex Aerosp Flows, Shenzhen 518055, Peoples R China
2.Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Hubei, Peoples R China
3.Peking Univ, Coll Engn, Ctr Appl Phys & Technol, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
第一作者单位力学与航空航天工程系
通讯作者单位力学与航空航天工程系
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Xie, Chenyue,Wang, Jianchun,Li, Hui,et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence[J]. PHYSICS OF FLUIDS,2019,31(8).
APA
Xie, Chenyue,Wang, Jianchun,Li, Hui,Wan, Minping,&Chen, Shiyi.(2019).Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence.PHYSICS OF FLUIDS,31(8).
MLA
Xie, Chenyue,et al."Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence".PHYSICS OF FLUIDS 31.8(2019).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Xie-2019-Artificial (12011KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xie, Chenyue]的文章
[Wang, Jianchun]的文章
[Li, Hui]的文章
百度学术
百度学术中相似的文章
[Xie, Chenyue]的文章
[Wang, Jianchun]的文章
[Li, Hui]的文章
必应学术
必应学术中相似的文章
[Xie, Chenyue]的文章
[Wang, Jianchun]的文章
[Li, Hui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map