题名 | Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence |
作者 | |
通讯作者 | Wang, Jianchun; Chen, Shiyi |
发表日期 | 2019-08
|
DOI | |
发表期刊 | |
ISSN | 1070-6631
|
EISSN | 1089-7666
|
卷号 | 31期号:8 |
摘要 | In this work, the subgrid-scale (SGS) stress and the SGS heat flux of compressible isotropic turbulence are modeled by an artificial neural network (ANN) mixed model (ANNMM), which maintains both functional and structural performances. The functional form of the mixed model combining the gradient model and the Smagorinsky's eddy viscosity model is imposed, and the ANN is used to calculate the model coefficients of the SGS anisotropy stress, SGS energy, and SGS heat flux. It is shown that the ANNMM can reconstruct the SGS terms more accurately than the gradient model in the a priori test. Specifically, the ANNMM almost recovers the average values of the SGS energy flux and SGS energy flux conditioned on the normalized filtered velocity divergence. In an a posteriori analysis, the ANNMM shows advantage over the dynamic Smagorinsky model (DSM) and dynamic mixed model (DMM) in the prediction of the spectra of velocity and temperature, which almost overlap with the filtered direct numerical simulation data, while the DSM and DMM suffer from the problem of the typical tilted spectral distribution. Besides, the ANNMM predicts the probability density functions of SGS energy flux much better than DSM and DMM. ANN with functional model forms can enlighten and deepen our understanding of large eddy simulation modeling. Published under license by AIP Publishing. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Young Elite Scientist Sponsorship Program by CAST[2016QNRC001]
|
WOS研究方向 | Mechanics
; Physics
|
WOS类目 | Mechanics
; Physics, Fluids & Plasmas
|
WOS记录号 | WOS:000483888900058
|
出版者 | |
EI入藏号 | 20193507358769
|
EI主题词 | Heat flux
; Neural networks
; Probability density function
; Turbulence
|
EI分类号 | Fluid Flow:631
; Heat Transfer:641.2
; Mathematics:921
; Probability Theory:922.1
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:66
|
成果类型 | 期刊论文 |
条目标识符 | http://kc.sustech.edu.cn/handle/2SGJ60CL/25398 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen Key Lab Complex Aerosp Flows, Shenzhen 518055, Peoples R China 2.Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Hubei, Peoples R China 3.Peking Univ, Coll Engn, Ctr Appl Phys & Technol, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China |
第一作者单位 | 力学与航空航天工程系 |
通讯作者单位 | 力学与航空航天工程系 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Xie, Chenyue,Wang, Jianchun,Li, Hui,et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence[J]. PHYSICS OF FLUIDS,2019,31(8).
|
APA |
Xie, Chenyue,Wang, Jianchun,Li, Hui,Wan, Minping,&Chen, Shiyi.(2019).Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence.PHYSICS OF FLUIDS,31(8).
|
MLA |
Xie, Chenyue,et al."Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence".PHYSICS OF FLUIDS 31.8(2019).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Xie-2019-Artificial (12011KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论