题名 | Multi-label Classification Based on Adaptive Resonance Theory |
作者 | |
通讯作者 | Hisao Ishibuchi |
DOI | |
发表日期 | 2020
|
会议名称 | 2020 IEEE Symposium Series on Computational Intelligence (SSCI)
|
ISBN | 978-1-7281-2548-0
|
会议录名称 | |
页码 | 1913-1920
|
会议日期 | 1-4 Dec. 2020
|
会议地点 | Canberra, ACT, Australia
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | This paper proposes a multi-label classification algorithm based on an algorithm adaptation approach by applying the Adaptive Resonance Theory (ART) and the Bayesian approach for a label association process. In the proposed algorithm, the prior probability and likelihood are updated sequentially. Moreover, an ART-based clustering algorithm continually extracts useful information for multi-label classification, and holds the extracted information on prototype nodes generated by the clustering algorithm. Thanks to the above properties, the proposed algorithm can continually learn multi-label data. Our experimental results in this paper show that the proposed algorithm has better classification performance compared to typical multi-label classification algorithms. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Frontier Research Grant) from University of Malaya[FG00317AFR]
; ONRG from Office of Naval and Research Global, UK[(ONRGNICOP-N62909-18-1-2086)/IF017-2018]
; International Collaboration Fund for project Developmental Cognitive Robot with Continual Lifelong Learning from MESTECC, Malaysia[IF0318M1006]
; National Natural Science Foundation of China[61876075]
; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386]
; Shenzhen Peacock Plan[KQTD2016112514355531]
; Science and Technology Innovation Committee Foundation of Shenzhen[ZDSYS201703031748284]
; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000682772901129
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9308356 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://kc.sustech.edu.cn/handle/2SGJ60CL/223978 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Graduate School of Engineering, Osaka Prefecture University 2.Faculty of Computer Science and Information Technology, University of Malaya 3.Department of Computer Science and Engineering, Southern University of Science and Technology |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Naoki Masuyama,Yusuke Nojima,Chu Kiong Loo,et al. Multi-label Classification Based on Adaptive Resonance Theory[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1913-1920.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论