中文版 | English
题名

Multi-label Classification Based on Adaptive Resonance Theory

作者
通讯作者Hisao Ishibuchi
DOI
发表日期
2020
会议名称
2020 IEEE Symposium Series on Computational Intelligence (SSCI)
ISBN
978-1-7281-2548-0
会议录名称
页码
1913-1920
会议日期
1-4 Dec. 2020
会议地点
Canberra, ACT, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
This paper proposes a multi-label classification algorithm based on an algorithm adaptation approach by applying the Adaptive Resonance Theory (ART) and the Bayesian approach for a label association process. In the proposed algorithm, the prior probability and likelihood are updated sequentially. Moreover, an ART-based clustering algorithm continually extracts useful information for multi-label classification, and holds the extracted information on prototype nodes generated by the clustering algorithm. Thanks to the above properties, the proposed algorithm can continually learn multi-label data. Our experimental results in this paper show that the proposed algorithm has better classification performance compared to typical multi-label classification algorithms.
关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Frontier Research Grant) from University of Malaya[FG00317AFR] ; ONRG from Office of Naval and Research Global, UK[(ONRGNICOP-N62909-18-1-2086)/IF017-2018] ; International Collaboration Fund for project Developmental Cognitive Robot with Continual Lifelong Learning from MESTECC, Malaysia[IF0318M1006] ; National Natural Science Foundation of China[61876075] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Peacock Plan[KQTD2016112514355531] ; Science and Technology Innovation Committee Foundation of Shenzhen[ZDSYS201703031748284] ; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号
WOS:000682772901129
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9308356
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/223978
专题工学院_计算机科学与工程系
作者单位
1.Graduate School of Engineering, Osaka Prefecture University
2.Faculty of Computer Science and Information Technology, University of Malaya
3.Department of Computer Science and Engineering, Southern University of Science and Technology
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Naoki Masuyama,Yusuke Nojima,Chu Kiong Loo,et al. Multi-label Classification Based on Adaptive Resonance Theory[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1913-1920.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Naoki Masuyama]的文章
[Yusuke Nojima]的文章
[Chu Kiong Loo]的文章
百度学术
百度学术中相似的文章
[Naoki Masuyama]的文章
[Yusuke Nojima]的文章
[Chu Kiong Loo]的文章
必应学术
必应学术中相似的文章
[Naoki Masuyama]的文章
[Yusuke Nojima]的文章
[Chu Kiong Loo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map