中文版 | English
题名

Multiobjective fuzzy genetics-based machine learning for multi-label classification

作者
通讯作者Ishibuchi,Hisao
DOI
发表日期
2020-07-01
会议名称
2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
ISSN
1098-7584
ISBN
978-1-7281-6933-0
会议录名称
卷号
2020-July
页码
1-8
会议日期
19-24 July 2020
会议地点
Glasgow, UK
摘要

In multi-label classification problems, multiple class labels are assigned to each instance. Two approaches have been studied in the literature. One is a data transformation approach, which transforms a multi-label dataset into a number of singlelabel datasets. However, this approach often loses the correlation information among classes in the multi-class assignment. The other is a method adaptation approach where a conventional classification method is extended to multi-label classification. Recently, some explainable classification models for multi-label classification have been proposed. Their high interpretability has also been discussed with respect to the transparency of the classification process. Although the explainability is a well-known advantage of fuzzy systems, their applications to multi-label classification have not been well studied. Since multi-label classification problems often have vague class boundaries, fuzzy systems seem to be a promising approach to multi-label classification. In this paper, we propose a new multiobjective evolutionary fuzzy system, which can be categorized as a method adaptation approach. The proposed algorithm produces nondominated classifiers with different tradeoffs between accuracy and complexity. We examine the behavior of the proposed algorithm using synthetic multi-label datasets. We also compare the proposed algorithm with five representative algorithms. Our experimental results on real-world datasets show that the obtained fuzzy classifiers with a small number of fuzzy rules have high transparency and comparable generalization ability to the other examined multi-label classification algorithms.

关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203709174053
EI主题词
Transparency ; Fuzzy inference ; Machine learning ; Metadata ; Classification (of information) ; Evolutionary algorithms ; Chromosomes
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Information Theory and Signal Processing:716.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Artificial Intelligence:723.4 ; Expert Systems:723.4.1 ; Light/Optics:741.1 ; Information Sources and Analysis:903.1
Scopus记录号
2-s2.0-85090502591
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9177804
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/187967
专题工学院_计算机科学与工程系
作者单位
1.Osaka Prefecture University,Department of Computer Science and Intelligent Systems,Graduate School of Engineering,Osaka,Japan
2.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Omozaki,Yuichi,Masuyama,Naoki,Nojima,Yusuke,et al. Multiobjective fuzzy genetics-based machine learning for multi-label classification[C],2020:1-8.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Multiobjective_Fuzzy(3196KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Omozaki,Yuichi]的文章
[Masuyama,Naoki]的文章
[Nojima,Yusuke]的文章
百度学术
百度学术中相似的文章
[Omozaki,Yuichi]的文章
[Masuyama,Naoki]的文章
[Nojima,Yusuke]的文章
必应学术
必应学术中相似的文章
[Omozaki,Yuichi]的文章
[Masuyama,Naoki]的文章
[Nojima,Yusuke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map