中文版 | English
题名

Lazy Greedy Hypervolume Subset Selection from Large Candidate Solution Sets

作者
DOI
发表日期
2020-07-01
会议名称
IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
ISBN
978-1-7281-6930-9
会议录名称
页码
1-8
会议日期
JUL 19-24, 2020
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Subset selection is a popular topic in recent years and a number of subset selection methods have been proposed. Among those methods, hypervolume subset selection is widely used. Greedy hypervolume subset selection algorithms can achieve good approximations to the optimal subset. However, when the candidate set is large (e.g., an unbounded external archive with a large number of solutions), the algorithm is very time-consuming. In this paper, we propose a new lazy greedy algorithm exploiting the submodular property of the hypervolume indicator. The core idea is to avoid unnecessary hypervolume contribution calculation when finding the solution with the largest contribution. Experimental results show that the proposed algorithm is hundreds of times faster than the original greedy inclusion algorithm and several times faster than the fastest known greedy inclusion algorithm on many test problems.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Science and Technology Program[KQTD2016112514355531] ; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703998203007
EI入藏号
20204109316814
EI主题词
Approximation algorithms ; Evolutionary algorithms ; Feature Selection
EI分类号
Mathematics:921 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
Scopus记录号
2-s2.0-85092043063
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185878
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/187954
专题南方科技大学
工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Shenzhen,518055,China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Chen,Weiyu,Ishibuchi,Hisao,Shang,Ke. Lazy Greedy Hypervolume Subset Selection from Large Candidate Solution Sets[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Weiyu]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
百度学术
百度学术中相似的文章
[Chen,Weiyu]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
必应学术
必应学术中相似的文章
[Chen,Weiyu]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map