题名 | Lazy Greedy Hypervolume Subset Selection from Large Candidate Solution Sets |
作者 | |
DOI | |
发表日期 | 2020-07-01
|
会议名称 | IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
|
ISBN | 978-1-7281-6930-9
|
会议录名称 | |
页码 | 1-8
|
会议日期 | JUL 19-24, 2020
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Subset selection is a popular topic in recent years and a number of subset selection methods have been proposed. Among those methods, hypervolume subset selection is widely used. Greedy hypervolume subset selection algorithms can achieve good approximations to the optimal subset. However, when the candidate set is large (e.g., an unbounded external archive with a large number of solutions), the algorithm is very time-consuming. In this paper, we propose a new lazy greedy algorithm exploiting the submodular property of the hypervolume indicator. The core idea is to avoid unnecessary hypervolume contribution calculation when finding the solution with the largest contribution. Experimental results show that the proposed algorithm is hundreds of times faster than the original greedy inclusion algorithm and several times faster than the fastest known greedy inclusion algorithm on many test problems. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386]
; Shenzhen Science and Technology Program[KQTD2016112514355531]
; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703998203007
|
EI入藏号 | 20204109316814
|
EI主题词 | Approximation algorithms
; Evolutionary algorithms
; Feature Selection
|
EI分类号 | Mathematics:921
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
Scopus记录号 | 2-s2.0-85092043063
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185878 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://kc.sustech.edu.cn/handle/2SGJ60CL/187954 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Shenzhen,518055,China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Chen,Weiyu,Ishibuchi,Hisao,Shang,Ke. Lazy Greedy Hypervolume Subset Selection from Large Candidate Solution Sets[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论