题名 | Dynamic Normalization in MOEA/D for Multiobjective optimization |
作者 | |
DOI | |
发表日期 | 2020-07-01
|
会议名称 | IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
|
ISBN | 978-1-7281-6930-9
|
会议录名称 | |
页码 | 1-8
|
会议日期 | JUL 19-24, 2020
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Objective space normalization is important since areal-world multiobjective problem usually has differently scaled objective functions. Recently, bad effects of the commonly used simple normalization method have been reported for the popular decomposition-based algorithm MOEA/D. However, the effects of recently proposed sophisticated normalization methods have not been investigated. In this paper, we examine the effectiveness of these normalization methods in MOEA/D. We find that these normalization methods can cause performance deterioration. We also find that the sophisticated normalization methods are not necessarily better than the simple one. Although the negative effects of inaccurate estimation of the nadir point are well recognized in the literature, no solution has been proposed. In order to address this issue, we propose two dynamic normalization strategies which dynamically adjust the extent of normalization during the evolutionary process. Experimental results clearly show the necessity of considering the extent of normalization. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075]
; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386]
; Shenzhen Peacock Plan[KQTD2016112514355531]
; Science and Technology Innovation Committee Foundation of Shenzhen[ZDSYS201703031748284]
; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703998202106
|
EI入藏号 | 20204109316785
|
EI主题词 | Evolutionary algorithms
; Deterioration
|
EI分类号 | Optimization Techniques:921.5
; Materials Science:951
|
Scopus记录号 | 2-s2.0-85092048128
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185849 |
引用统计 |
被引频次[WOS]:12
|
成果类型 | 会议论文 |
条目标识符 | http://kc.sustech.edu.cn/handle/2SGJ60CL/187952 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.University Key Laboratory of Evolving Intelligent Systems of Guangdong Province,Southern University of Science and Technology,Shenzhen Key Laboratory of Computational Intelligence,Shenzhen,China 2.National University of Singapore,Department of Electrical and Computer Engineering,Singapore |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
He,Linjun,Ishibuchi,Hisao,Trivedi,Anupam,et al. Dynamic Normalization in MOEA/D for Multiobjective optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论