中文版 | English
题名

Dynamic Normalization in MOEA/D for Multiobjective optimization

作者
DOI
发表日期
2020-07-01
会议名称
IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
ISBN
978-1-7281-6930-9
会议录名称
页码
1-8
会议日期
JUL 19-24, 2020
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Objective space normalization is important since areal-world multiobjective problem usually has differently scaled objective functions. Recently, bad effects of the commonly used simple normalization method have been reported for the popular decomposition-based algorithm MOEA/D. However, the effects of recently proposed sophisticated normalization methods have not been investigated. In this paper, we examine the effectiveness of these normalization methods in MOEA/D. We find that these normalization methods can cause performance deterioration. We also find that the sophisticated normalization methods are not necessarily better than the simple one. Although the negative effects of inaccurate estimation of the nadir point are well recognized in the literature, no solution has been proposed. In order to address this issue, we propose two dynamic normalization strategies which dynamically adjust the extent of normalization during the evolutionary process. Experimental results clearly show the necessity of considering the extent of normalization.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Peacock Plan[KQTD2016112514355531] ; Science and Technology Innovation Committee Foundation of Shenzhen[ZDSYS201703031748284] ; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703998202106
EI入藏号
20204109316785
EI主题词
Evolutionary algorithms ; Deterioration
EI分类号
Optimization Techniques:921.5 ; Materials Science:951
Scopus记录号
2-s2.0-85092048128
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185849
引用统计
被引频次[WOS]:12
成果类型会议论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/187952
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.University Key Laboratory of Evolving Intelligent Systems of Guangdong Province,Southern University of Science and Technology,Shenzhen Key Laboratory of Computational Intelligence,Shenzhen,China
2.National University of Singapore,Department of Electrical and Computer Engineering,Singapore
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
He,Linjun,Ishibuchi,Hisao,Trivedi,Anupam,et al. Dynamic Normalization in MOEA/D for Multiobjective optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He,Linjun]的文章
[Ishibuchi,Hisao]的文章
[Trivedi,Anupam]的文章
百度学术
百度学术中相似的文章
[He,Linjun]的文章
[Ishibuchi,Hisao]的文章
[Trivedi,Anupam]的文章
必应学术
必应学术中相似的文章
[He,Linjun]的文章
[Ishibuchi,Hisao]的文章
[Trivedi,Anupam]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map