中文版 | English
题名

Evaluation of retinal image quality assessment networks in different color-spaces

作者
通讯作者Shen,Jianbing
DOI
发表日期
2019
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
11764 LNCS
页码
48-56
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Retinal image quality assessment (RIQA) is essential for controlling the quality of retinal imaging and guaranteeing the reliability of diagnoses by ophthalmologists or automated analysis systems. Existing RIQA methods focus on the RGB color-space and are developed based on small datasets with binary quality labels (i.e., ‘Accept’ and ‘Reject’). In this paper, we first re-annotate an Eye-Quality (EyeQ) dataset with 28,792 retinal images from the EyePACS dataset, based on a three-level quality grading system (i.e., ‘Good’, ‘Usable’ and ‘Reject’) for evaluating RIQA methods. Our RIQA dataset is characterized by its large-scale size, multi-level grading, and multi-modality. Then, we analyze the influences on RIQA of different color-spaces, and propose a simple yet efficient deep network, named Multiple Color-space Fusion Network (MCF-Net), which integrates the different color-space representations at both a feature-level and prediction-level to predict image quality grades. Experiments on our EyeQ dataset show that our MCF-Net obtains a state-of-the-art performance, outperforming the other deep learning methods. Furthermore, we also evaluate diabetic retinopathy (DR) detection methods on images of different quality, and demonstrate that the performances of automated diagnostic systems are highly dependent on image quality.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Engineering ; Microscopy ; Neurosciences & Neurology ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Engineering, Biomedical ; Microscopy ; Neuroimaging ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000548734200006
EI入藏号
20194807768282
EI主题词
Color ; Image analysis ; Deep learning ; Diagnosis ; Reliability analysis ; Ophthalmology ; Quality control ; Eye protection ; Image quality ; Large dataset
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Data Processing and Image Processing:723.2 ; Light/Optics:741.1 ; Quality Assurance and Control:913.3 ; Accidents and Accident Prevention:914.1
Scopus记录号
2-s2.0-85075640913
来源库
Scopus
引用统计
被引频次[WOS]:100
成果类型会议论文
条目标识符http://kc.sustech.edu.cn/handle/2SGJ60CL/106530
专题南方科技大学
作者单位
1.Inception Institute of Artificial Intelligence,Abu Dhabi,United Arab Emirates
2.Southern University of Science and Technology,Shenzhen,China
3.Cixi Institute of Biomedical Engineering,CAS,Ningbo,China
推荐引用方式
GB/T 7714
Fu,Huazhu,Wang,Boyang,Shen,Jianbing,et al. Evaluation of retinal image quality assessment networks in different color-spaces[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2019:48-56.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fu,Huazhu]的文章
[Wang,Boyang]的文章
[Shen,Jianbing]的文章
百度学术
百度学术中相似的文章
[Fu,Huazhu]的文章
[Wang,Boyang]的文章
[Shen,Jianbing]的文章
必应学术
必应学术中相似的文章
[Fu,Huazhu]的文章
[Wang,Boyang]的文章
[Shen,Jianbing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map