题名 | Evaluation of retinal image quality assessment networks in different color-spaces |
作者 | |
通讯作者 | Shen,Jianbing |
DOI | |
发表日期 | 2019
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 11764 LNCS
|
页码 | 48-56
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Retinal image quality assessment (RIQA) is essential for controlling the quality of retinal imaging and guaranteeing the reliability of diagnoses by ophthalmologists or automated analysis systems. Existing RIQA methods focus on the RGB color-space and are developed based on small datasets with binary quality labels (i.e., ‘Accept’ and ‘Reject’). In this paper, we first re-annotate an Eye-Quality (EyeQ) dataset with 28,792 retinal images from the EyePACS dataset, based on a three-level quality grading system (i.e., ‘Good’, ‘Usable’ and ‘Reject’) for evaluating RIQA methods. Our RIQA dataset is characterized by its large-scale size, multi-level grading, and multi-modality. Then, we analyze the influences on RIQA of different color-spaces, and propose a simple yet efficient deep network, named Multiple Color-space Fusion Network (MCF-Net), which integrates the different color-space representations at both a feature-level and prediction-level to predict image quality grades. Experiments on our EyeQ dataset show that our MCF-Net obtains a state-of-the-art performance, outperforming the other deep learning methods. Furthermore, we also evaluate diabetic retinopathy (DR) detection methods on images of different quality, and demonstrate that the performances of automated diagnostic systems are highly dependent on image quality. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Engineering
; Microscopy
; Neurosciences & Neurology
; Imaging Science & Photographic Technology
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Software Engineering
; Engineering, Biomedical
; Microscopy
; Neuroimaging
; Imaging Science & Photographic Technology
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000548734200006
|
EI入藏号 | 20194807768282
|
EI主题词 | Color
; Image analysis
; Deep learning
; Diagnosis
; Reliability analysis
; Ophthalmology
; Quality control
; Eye protection
; Image quality
; Large dataset
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Medicine and Pharmacology:461.6
; Data Processing and Image Processing:723.2
; Light/Optics:741.1
; Quality Assurance and Control:913.3
; Accidents and Accident Prevention:914.1
|
Scopus记录号 | 2-s2.0-85075640913
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:100
|
成果类型 | 会议论文 |
条目标识符 | http://kc.sustech.edu.cn/handle/2SGJ60CL/106530 |
专题 | 南方科技大学 |
作者单位 | 1.Inception Institute of Artificial Intelligence,Abu Dhabi,United Arab Emirates 2.Southern University of Science and Technology,Shenzhen,China 3.Cixi Institute of Biomedical Engineering,CAS,Ningbo,China |
推荐引用方式 GB/T 7714 |
Fu,Huazhu,Wang,Boyang,Shen,Jianbing,et al. Evaluation of retinal image quality assessment networks in different color-spaces[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2019:48-56.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论